Некоторые аспекты сходимости с регулятором в векторных решетках

ВОРКШОП ПО ФУНКЦИОНАЛЬНОМУ АНАЛИЗУ, ПОСВЯЩЕННЫЙ ЮБИЛЕЮ Д.Ф.-М.Н., ПРОФ. А.Г. КУСРАЕВА (1-3 МАРТА 2023 Г.)
Э.Ю. Емельянов

Институт математики им. С.Л. Соболева СО РАН

Введение

Recall that a net x_{α} in a vector lattice E relatively uniformly converges, or r-converges to $x \in E$ if there exists $u \in E_{+}$ (a regulator of the convergence) such that $x_{\alpha} \xrightarrow{r} x(u)$, i.e., for each $k \in \mathbb{N}$, there exists α_{k} with

$$
\left|x_{\alpha}-x\right| \leqslant \frac{1}{k} u \text { for all } \alpha \geqslant \alpha_{k}
$$

(cf. Definition III.11.1 in [Vulikh1961]) In this case we write $x_{\alpha} \xrightarrow{r} x$.

The r-convergence is sequential in the sense that it follows from $\left(x_{\alpha}\right)_{\alpha \in A} \xrightarrow{r} x$ that there exists a sequence $\alpha_{\beta_{n}}$ of elements of A satisfying $x_{\alpha_{\beta n}} \xrightarrow{r} x$.

The relatively uniformly convergence is an abstraction of the classical uniform convergence of functions.

A net x_{α} in E is called r-Cauchy with a regulator $u \in E_{+}$if $x_{\alpha^{\prime}}-x_{\alpha^{\prime \prime}} \xrightarrow{r} 0(u)$, i.e., for each $k \in \mathbb{N}$ there exists α_{k} with

$$
\left|x_{\alpha^{\prime}}-x_{\alpha^{\prime \prime}}\right| \leqslant \frac{1}{k} u \text { for all } \alpha^{\prime}, \alpha^{\prime \prime} \geqslant \alpha_{k}
$$

A net x_{α} in E is called r-Cauchy if x_{α} is r-Cauchy with some regulator $u \in E_{+}$.

Clearly,

$$
x_{\alpha} \xrightarrow{r} x(u) \Rightarrow x_{\alpha^{\prime}}-x_{\alpha^{\prime \prime}} \xrightarrow{r} \mathrm{O}(u),
$$

and

$$
\frac{1}{n} x \xrightarrow{r} 0(x) \quad\left(\forall x \in E_{+}\right) .
$$

A vector lattice E is called Archimedean if, for each $x \in E_{+}$,

$$
\frac{1}{n} x \xrightarrow{r} y(x) \Rightarrow y=0 .
$$

E is Archimedean iff every r-convergent net in E has a unique limit.

Remark 1. Let x_{α} be an r-Cauchy net in a sublattice E of an Archimedean VL F with a regulator $u \in E_{+}$. If $x_{\alpha} \xrightarrow{r} y(w)$ with $y \in E$ and $w \in F_{+}$then $x_{\alpha} \xrightarrow{r} y(u)$.

Indeed, let $x_{\alpha} \xrightarrow{r} y(w)$ with $y \in E$ and $w \in F_{+}$. For each $l \in \mathbb{N}$ we take an $\alpha(l)$ with $\left|x_{\alpha}-y\right| \leqslant \frac{1}{l} w$ for $\alpha \geqslant \alpha(l)$. Let $k \in \mathbb{N}$. Since $x_{\alpha^{\prime}}-x_{\alpha^{\prime \prime}} \xrightarrow{r} 0(u)$, there exists α_{k} with $\left|x_{\alpha^{\prime}}-x_{\alpha^{\prime \prime}}\right| \leqslant \frac{1}{k} u$ for $\alpha^{\prime}, \alpha^{\prime \prime} \geqslant \alpha_{k}$. Fix any $l \in \mathbb{N}$ and pick an $\alpha(k, l) \geqslant \alpha_{k}, \alpha(l)$. Then

$$
\left|x_{\alpha}-y\right| \leqslant\left|x_{\alpha}-x_{\alpha(k, l)}\right|+\left|x_{\alpha(k, l)}-y\right| \leqslant \frac{1}{k} u+\frac{1}{l} w
$$

for each $\alpha \geqslant \alpha_{k}$. Since $l \in \mathbb{N}$ is arbitrary and F is Archimedean then $\left|x_{\alpha}-y\right| \leqslant \frac{1}{k} u$ for all $\alpha \geqslant \alpha_{k}$, and hence $x_{\alpha} \xrightarrow{r} y(u)$.

This is no longer true in every non-Archimedean VL F. Indeed, WLOG assume $F=\mathbb{R}_{\text {lex }}^{2}$. Then, for $\left.E:=\{<0, t\rangle: t \in \mathbb{R}\right\}$:

$$
\begin{aligned}
& <0,1 / n>\xrightarrow{r}<0,0>(<0,1>) \text { and } \\
& \qquad<0,1 / n>\xrightarrow{r}<0,1>(<1,0>), \\
& \text { yet }<0,1 / n>\stackrel{r}{\rightarrow}<0,1>(<0,1>) .
\end{aligned}
$$

Remark 2. For a sublattice E of an Archimedean VL F, if $E \ni x_{\alpha} \xrightarrow{r} y(u)$ and $x_{\alpha} \xrightarrow{r} z(w)$ with $y, z \in F, u, w \in F_{+}$then $y=z$.

Indeed, under the assumption of Remark $2, x_{\alpha} \stackrel{r}{\rightarrow} y(u+w)$ and $x_{\alpha} \xrightarrow{r} z(u+w)$. Since F is Archimedean, it follows $y=z$.

As above, it is no longer true in every non-Archimedean F. Indeed, WLOG assume $F=\mathbb{R}_{\text {lex }}^{2}$. Then, for $\left.E:=\{<0, t\rangle: t \in \mathbb{R}\right\}$:

$$
\begin{gathered}
<0,1 / n>\xrightarrow{r}<0,0>(<0,1>) \text { and } \\
\quad<0,1 / n>\xrightarrow{r}<0,1>(<1,0>) .
\end{gathered}
$$

Архимедизация векторной решетки

The Archimedeanization of an ordered vector space with a (strong) order unit was constructed in [PT2009] (V.I. Paulsen, M.

Tomforde: Vector spaces with an order unit. Indiana Univ. Math. J. (2009)).

The extension to arbitrary ordered vector space was obtained in [E2017] (E.Y. Emelyanov: Archimedean Cones in Vector Spaces. Journal of Convex Analysis (2017)).

Here, we discuss the Archimedeanization of a vector lattice.

Given a vector lattice E, denote by

$$
I_{E}:=\left\{x \in E|(\exists y \in E)(\forall n \in \mathbb{N})| x \left\lvert\, \leqslant \frac{1}{n} y\right.\right\}
$$

the set of all infinitesimals of E. Then I_{E} is an order ideal in E. A VL E is Archimedean iff $I_{E}=\{0\}$.

If E has a strong order unit $u \in E$ then $u \notin I_{E}$. However, in the absence of strong order units it may happened $I_{E}=E$ (e.g., for the nonstandard extension ${ }^{*} \mathbb{R}$ of \mathbb{R}).

Denote

$$
D_{E}:=\left\{x \in E \mid\left(\exists y \in E_{+}\right)(\forall \varepsilon>0) x+\varepsilon y \geqslant 0\right\} .
$$

Then $E_{+} \subseteq D_{E}$ and

$$
I_{E}=D_{E} \cap\left(-D_{E}\right)
$$

The set D_{E} is a wedge, i.e.:

$$
D_{E}+D_{E} \subseteq D_{E} \quad \text { and } \quad r W \subseteq W \text { for all } r \geqslant 0
$$

Consider the sets

$$
E_{+}+I_{E}=\left[E_{+}\right]_{I_{E}}
$$

and

$$
D_{E}+I_{E}=\left[D_{E}\right]_{I_{E}}
$$

in the quotient $\mathrm{VL} E / I_{E}$. Both sets are cones since

$$
\left(D_{E}+I_{E}\right) \cap\left(-D_{E}+I_{E}\right)=D_{E} \cap\left(-D_{E}\right)=I_{E}
$$

and

$$
\left(E_{+}+I_{E}\right) \cap\left(-E_{+}+I_{E}\right)=I_{E}
$$

If $A \subseteq E$ be an order ideal then, by the Veksler theorem (A.I. Veksler: Archimedean principle in homomorphic images of I-groups and of vector lattices. Izv. Vyshs. Ucebn. Zaved. Matematika, (1966)),

$$
E / A \text { is Archimedean } \Leftrightarrow A \text { is } r \text {-closed. }
$$

In general, I_{E} need not to be r-closed in E.

To see this, consider the following example that is due to T. Nakayama (see, [LZ1971] W.A.J. Luxemburg, A.C. Zaanen, Riesz Spaces, I, (1971).
Example 1. Consider the vector lattice
$E=\left\{a=\left(a_{k}^{1}, a_{k}^{2}\right)_{k} \mid\left(a_{k}^{1}, a_{k}^{2}\right) \in\left(\mathbb{R}^{2}, \leqslant l e x\right), a_{k}^{1} \neq 0\right.$ for finitely many $\left.k\right\}$ with respect to the pointwise ordering and operations. Then I_{E} is not r-closed in E and hence the VL E / I_{E} still has nonzero infinitesimals by the Veksler theorem.

Definition 1. Let E be a $V L$ and $\mathcal{R}_{\text {Arch }}(E)$ be the category whose objects are pairs $\langle F, \phi\rangle$, where F is an Archimedean VL and $\phi: E \rightarrow$ F a lattice homomorphism, and morphisms $\left\langle F_{1}, \phi_{1}\right\rangle \rightarrow\left\langle F_{2}, \phi_{2}\right\rangle$ are lattice homomorphisms $q_{12}: F_{1} \rightarrow F_{2}$ such that $q_{12} \circ \phi_{1}=\phi_{2}$.

If $\mathcal{R}_{\text {Arch }}(E)$ possesses an initial object $\left\langle F_{0}, \phi_{0}\right\rangle$, then F_{0} is called an Archimedization of E.

Denote by $\operatorname{Arch}_{V L}(E)$ the Archimedization of a VL E, if exists.

Theorem 1. Any VL has an Archimedeanization.

The idea of a proof: Let E be a VL. Denote $I_{0}:=\{0\}$,

$$
\begin{aligned}
& \qquad I_{1}:=I_{E}=\left\{x \in E \mid[x]_{I_{0}} \text { is an infinitesimal in } E / I_{0}=E\right\}, \\
& \qquad I_{n+1}:=\left\{x \in E \mid[x]_{I_{n}} \text { is an infinitesimal in } E / I_{n}\right\} \\
& \text { and, more generally, for an arbitrary ordinal } \alpha>0 \text { : }
\end{aligned}
$$

$$
I_{\alpha}=I_{\alpha}(E)=\left\{x \in E \mid[x]_{\cup_{\beta<\alpha} I_{\beta}} \text { is an infinitesimal in } E / \cup_{\beta<\alpha} I_{\beta}\right\}
$$

All I_{α} are order ideals in E and $I_{\alpha_{1}} \subseteq I_{\alpha_{2}}$ for $\alpha_{1} \leqslant \alpha_{2}$.

Take the first ordinal, say λ_{E}, such that $I_{\lambda_{E}+1}=I_{\lambda_{E}}$. Then the VL $E / I_{\lambda_{E}}$ has no nonzero infinitesimals and hence is Archimedean.

The quotient map $p_{E}: E \rightarrow E / I_{\lambda_{E}}$ is a lattice homomorphism. For any other pair $\langle F, \phi\rangle$, where F is an Archimedean VL and $\phi: E \rightarrow F$ is a lattice homomorphism, we have $\phi\left(I_{\alpha}\right) \subseteq I_{F}$ for each ordinal α.

Since F is Archimedean, $I_{F}=\{0\}$ and hence $I_{\lambda_{E}} \subseteq \operatorname{ker}(\phi)$. So, the map $\tilde{\phi}: E / I_{\lambda_{E}} \rightarrow F$ is well defined by $\tilde{\phi}\left([x]_{I_{\lambda_{E}}}\right)=\phi(x)$ and satisfies $\tilde{\phi} \circ p_{E}=\phi$. Moreover, $\tilde{\phi}$ is a lattice homomorphism.

In order to show that $\tilde{\phi}$ is unique, take any $\psi: E / I_{\lambda_{E}} \rightarrow F$, that satisfies $\psi \circ p_{E}=\phi$. Then

$$
\psi\left([y]_{I_{\lambda_{E}}}\right)=\psi\left(p_{E}(y)\right)=\phi(y)=\tilde{\phi}\left(p_{E}(y)\right)=\tilde{\phi}\left([y]_{\lambda_{\lambda_{E}}}\right) \quad(\forall y \in E),
$$

and hence $\psi=\tilde{\phi}$. Thus, $\left(E / I_{\lambda_{E}}, \tilde{\phi}\right)$ is an initial object of $\mathcal{R}_{\text {Arch }}(E)$, and hence the $\mathrm{VL} E / I_{\lambda_{V}}$ is an Archimedization of the VLE.

Let E be a VL. Denote by $\alpha_{V L}(E)$ the first ordinal α such that $I_{\alpha+1}(E)=I_{\alpha}(E)$.

Conjecture 1. For each VL $E, \alpha_{V L}(E)<\omega_{1}$, where ω_{1} is the first uncountable ordinal. Moreover, for each countable ordinal α there exists a VL E such that $\alpha_{V L}(E)=\alpha$.

Критерий топологичности сходимости с регулятором

Recall that $x_{\alpha} \xrightarrow{0} 0$ in a VL E if there exists a net y_{β} in E with $y_{\beta} \downarrow 0$ such that, for every β there is an α_{β} satisfying $\left|x_{\alpha}\right| \leqslant y_{\beta}$ for all $\alpha \geqslant \alpha_{\beta}$.

It was proved in Theorem 1 of [DEM2017] (Y.A. Dabboorasad, E.Y. Emelyanov, M.A.A. Marabeh: Order convergence in infinite-dimensional vector lattices is not topological, arXiv:1705.09883v1 (2017)) that, for a topological VL (E, τ) the following statements are equivalent.
(1) For every net x_{α} of $E: x_{\alpha} \rightarrow 0$ in τ iff $x_{\alpha} \xrightarrow{0} 0$.
(2) $\operatorname{dim}(E)<\infty$.

In particular, in an Archimedean VL E the order convergence is topological iff $\operatorname{dim}(E)<\infty$.

It is well known that in $c_{00}(\Omega): x_{\alpha} \xrightarrow{r} 0$ iff $x_{\alpha} \xrightarrow{0} 0$. This can be extended as follows.

The next fact is Proposition 4 of [DEM2018] (Y.A. Dabboorasad, E.Y. Emelyanov, M.A.A. Marabeh: $u \tau$-Convergence in locally solid vector lattices. Positivity (2018)):

Proposition 1. The following conditions are equivalent:
(1) $f_{\alpha} \xrightarrow{r} 0$ iff $f_{\alpha} \xrightarrow{\circ} 0$ for any net f_{α} in the $V L \mathbb{R}^{\Omega}$;
(2) Ω is countable.

Since order ideals are regular, it follows from Proposition 1 that, for any order ideal E of an atomic universally complete VL, the following conditions are equivalent.
(1) $f_{\alpha} \xrightarrow{r} 0$ iff $f_{\alpha} \xrightarrow{0} 0$ for each net f_{α} in E.
(2) E has at most countably many pairwise disjoint atoms.

Since in purely nonatomic universally complete VL the o-convergence is properly weaker than the r-convergence, it follows:

Proposition 2. Let E be an order ideal of a universally complete VL. Then the following conditions are equivalent.
(1) $f_{\alpha} \xrightarrow{r} 0$ iff $f_{\alpha} \xrightarrow{\circ} 0$ for any net f_{α} in E.
(2) E is discrete with at most countably many pairwise disjoint atoms.

The following is an r-version of Theorem 1 in [DEM2017].

Theorem 2. (Theorem 5 in [DEM2018]) Let E be an Archimedean VL. Then the following conditions are equivalent.
(1) There exists a linear topology τ on E such that, for any net x_{α} in $E: x_{\alpha} \xrightarrow{r} 0$ iff $x_{\alpha} \xrightarrow{\tau} 0$.
(2) There exists a norm $\|\cdot\|$ on X such that, for any net x_{α} in E : $x_{\alpha} \xrightarrow{r} 0$ iff $\left\|x_{\alpha}\right\| \rightarrow 0$.
(3) E has a strong order unit.

In other words, in an Archimedean VL E the r-convergence is topological iff E has a strong order unit. Clearly, in any nonArchimedean VL the r-convergence is not topological.

Конструкция свободной r-полной векторной решетки над непустым множеством

The existence of a free vector lattice $F V L(A)$ over a set A is the long established fact going back to Birkhoff [Birk1942], where more general result was established for algebraic systems. A concrete representation of $F V L(A)$ as a vector lattice of real-valued functions was given by Weinberg [Wein1963] and Baker [Baker1968]

Following the approach of de Pagter and Wickstead [PW2015], a free vector lattice over a non-empty set A is a pair (F, i), where F is a vector lattice and $i: A \rightarrow F$ is a map such that, for any vector lattice E and for any $\operatorname{map} q: A \rightarrow E$, there exists a unique lattice homomorphism $T: F \rightarrow E$ satisfying $q=T \circ i$. If (F, i) is a free vector lattice over A, then F is generated by $i(A)$ as a vector lattice.

Here, we discuss a free uniformly complete vector lattice over a non-empty set A and give some of its representations ([EG2022] E.

Emelyanov, S.G. Gorokhova: Free uniformly complete vector lattices. arxiv.org/abs/2109.03895).

A r-complete vector lattice will be abbreviated as a UCVL.

A UCVL F is called an r-completion of a VL E if there is a lattice embedding $i: E \rightarrow F$ such that, for each UCVL G and each lattice homomorphism $T: E \rightarrow G$, there exists a unique lattice homomorphism $S: F \rightarrow G$ satisfying $T=S \circ i$. If an r-completion F of a vector lattice E exists, it must be unique up to a lattice isomorphism.

As every r-complete VL E coincides with its r-completion, a VL that has an r-completion need not to be Archimedean (e.g., $\mathbb{R}_{\text {lex }}^{2}$ is r-complete).

It is long known that if E is Archimedean, then the intersection of all uniformly complete sublattices containing E of the Dedekind completion E^{δ} of E is the r-completion of E (see, for example [Veksler1969] A.I. Veksler: A new construction of Dedekind completion of vector lattices and of I-groups with division. Siberian Math. J. (1969)).

We recall some details of the construction of the r-completion in a slightly more general case.

As the r-convergence is sequential, we can restrict ourselves to r-convergent (and r-Cauchy) sequences. In particular, a VL U is UCVL iff every r-Cauchy sequence in U is r-convergent.

Furthermore, Remark 1 tells us that in the definition of a r-complete sublattice E of an Archimedean VL F we may always take from E the regulators of r-convergence.

Suppose E is a sublattice of some Archimedean UCVL U. Then the intersection F of all r-complete sublattices of U containing E is a UCVL.

Indeed, let x_{n} be r-Cauchy in F with a regulator $u \in F_{+}$. Take any r-complete sublattice V of U containing E. Then $x_{n} \xrightarrow{r} x(v)$ for some $v \in V_{+}$and hence $x_{n} \xrightarrow{r} x(u)$ by Remark 1 .

Define a transfinite sequence $\left(F_{\beta}\right)_{\beta \in \text { Ord }}$ of sublattices of U by:
$F_{1}:=E$;
$F_{\beta+1}:=\left\{x \in U: x_{n} \xrightarrow{r} x\left(x_{1}\right)\right.$, for a sequence x_{n} in $\left.F_{\beta}\right\}$;
$F_{\beta}:=\underset{\gamma \in \text { Ord; } \gamma<\beta}{\bigcup} F_{\gamma}$ for a limit ordinal β.

Then $F_{\beta_{1}} \subseteq F_{\beta_{2}}$ if $\beta_{1} \leqslant \beta_{2}$.

Lemma 1. Let E be a sublattice of an Archimedean UCVL U. Then the intersection F of all r-complete sublattices of U containing E satisfies $F=\bigcup_{\gamma \in \text { Ord }} F_{\gamma}$.

Since r-convergence is sequential,

$$
F=\bigcup_{\gamma \in \operatorname{Ord} ; \gamma<\omega_{1}} F_{\gamma}
$$

where ω_{1} is the first uncountable ordinal.

Lemma 1 leads to the following proposition that was already stated in indirect form in [Veksler1969]

Proposition 3. Let E be a sublattice of an Archimedean UCVL U. Then $\cup_{\gamma<\omega_{1}} F_{\gamma}$ is the r-completion of E.

Definition 2. If A is a non-empty set, then a free UCVL over A is a pair (F, i), where F is a UCVL and $i: A \rightarrow F$ is a map with the property that, for any UCVL E and for any $\operatorname{map} q: A \rightarrow E$, there exists a unique lattice homomorphism $T: F \rightarrow E$ such that $q=T \circ i$.

We denote a free UCVL over A by $F U C V L(A)$. It is an initial object in the category, whose objects are pairs (E, q) with a UCVL E and $q: A \rightarrow E$, and whose morphisms $T:\left(E_{1}, q_{1}\right) \rightarrow\left(E_{2}, q_{2}\right)$ are lattice homomorphisms from E_{1} to E_{2} satisfying $q_{2}=T \circ q_{1}$. Thus $F U C V L(A)$ is defined similarly to $F V L(A)$ in a proper subcategory.

Routine arguments show that if $F U C V L(A)$ exists it is unique up to a lattice isomorphism and the map $i: A \rightarrow F U C V L(A)$ above is injective.

By Theorem 2.4 of [Baker1968], $F V L(A)$ is a vector sublattice of $\mathbb{R}^{\mathbb{R}^{A}}$ generated by the evaluation functionals δ_{a} on $\mathbb{R}^{A}, \delta_{a}(\xi)=\xi(a)$.

Theorem 3. (Theorem 1 in [EG2022]) Let A be a non-empty set, and assume $F V L(A)$ to be a vector sublattice of $\mathbb{R}^{\mathbb{R}^{A}}$. The intersection F of all r-complete sublattices of $\mathbb{R}^{\mathbb{R}^{A}}$ containing $F V L(A)$ together with the embedding $a \xrightarrow{i} \delta_{a}$ is a $F U C V L(A)$.

Following the tradition, for $B \subseteq A$, we identify $\mathbb{R}^{\mathbb{R}^{B}}$ with a sublattice of $\mathbb{R}^{\mathbb{R}^{A}}$ by assigning $\xi \in \mathbb{R}^{\mathbb{R}^{B}}$ to $\widehat{\xi} \in \mathbb{R}^{\mathbb{R}^{A}}$ such that $\widehat{\xi}(f)=\xi\left(\left.f\right|_{B}\right)$.

By Proposition 3.5(2) of [PW2015], there exists a unique order projection P_{B} of $F V L(A)$ onto $F V L(B)$ satisfying

$$
P_{B}\left(\delta_{a}\right)=\left\{\begin{array}{lll}
\delta_{a} & \text { if } & a \in B \\
0 & \text { if } & a \in A \backslash B
\end{array}\right.
$$

In particular, $F V L(A)=\bigcup_{B \in \mathcal{P}_{\text {fin }}(A)} F V L(B)$, where $\mathcal{P}_{f i n}(A)$ is the set of all finite subsets of A (Proposition 3.7 in [PW2015]).

Denote by $H\left(\mathbb{R}^{A}\right)$ (by $H\left(\Delta_{A}\right)$) the space of all positively homogeneous real-valued functions on \mathbb{R}^{A} (on $\Delta_{A}:=[-1,1]^{A}$) which are continuous in the product topology of \mathbb{R}^{A} (of Δ_{A}).

Then $H\left(\Delta_{A}\right)$ is a closed in $\|\cdot\|_{\infty}$-norm vector sublattice of $C\left(\Delta_{A}\right)$, and hence $H\left(\Delta_{A}\right)$ is itself a Banach lattice.

The following notion was introduced by de Pagter and Wickstead.

Definition 3. (Definition 4.1 in [PW2015]) If A is a non-empty set, then a free Banach lattice over \boldsymbol{A} (shortly, $F B L(A)$) is a pair (F, i), where F is a Banach lattice and $i: A \rightarrow F$ is a bounded map with the property that for any Banach lattice E and any bounded map $\kappa: A \rightarrow E$ there exists a unique vector lattice homomorphism $T: F \rightarrow E$ such that $\kappa=T \circ i$ and $\|T\|=\sup \{\kappa(a): a \in A\}$.

The existence of $F B L(A)$ over a non-empty set A was established in Theorem 4.7 of [PW2015].

It is well known that $F V L(A)$ may be identified with a sublattice of $H\left(\mathbb{R}^{A}\right)$ and hence with a sublattice of $H\left(\Delta_{A}\right)$ in view of Lemma 5.1 of [PW2015].

By Corollary 5.7 of [PW2015], $F B L(A)$ is embedded into $H\left(\Delta_{A}\right)$ as an order ideal $J(F B L(A))$.

Furthermore, $J(F B L(A))=H\left(\Delta_{A}\right)$ iff A is finite and, in this case, $F B L(A)$ is isomorphic to $H\left(\Delta_{A}\right)$ under the supremum norm by Theorem 8.2 of [PW2015].

Theorem 4. (Theorem 2 in [EG2022]) Let B be a non-empty finite set. Then $F U C V L(B)$ is lattice isomorphic to $F B L(B)$, to $H\left(\Delta_{B}\right)$, and to $H\left(\mathbb{R}^{B}\right)$.

Since any Banach lattice is UCL, it follows from Proposition 4 that $F B L(A)$ contains an r-completion of $F V L(A)$.
$F U C V L(A)$ is a proper sublattice of $F B L(A)$ unless A is finite.
Corollary 1. Let A be a non-empty set. Then

$$
\bigcup_{B \in \mathcal{P}_{f i n}(A)} F B L(B) \subseteq F U C V L(A) \subseteq F B L(A)
$$

Furthermore, both inclusions are proper unless A is finite.

Proposition 4. (Proposition 2 in [EG2022]) Let A be a non-empty set, and let $x \in F B L(A)$. Then there exists a sequence x_{n} in $F V L(A)$ which r-converges to x with a regulator $u \in F B L(A)$.

Proposition 5. (Proposition 3 in [EG2022]) If a sequence g_{n} of $H\left(\mathbb{R}^{A}\right)$ r-converges with a regulator $u \in H\left(\mathbb{R}^{A}\right)$ to some $g \in \mathbb{R}^{\mathbb{R}^{A}}$ then $g \in H\left(\mathbb{R}^{A}\right)$.
[1] K.A. Baker.: Free vector lattices. Canad. J. Math. 20, 58-66 (1968)
[2] G. Birkhoff: Lattice, ordered groups. Ann. Math. 2(43), 298-331 (1942)
[3] R.D. Bleier: Free vector lattices. Trans. Am. Math. Soc. 176, 73-87 (1973)
[4] Y.A. Dabboorasad, E.Y. Emelyanov, M.A.A. Marabeh: Order convergence in infinite-dimensional vector lattices is not topological, arXiv:1705.09883v1 (2017).
[5] Y.A. Dabboorasad, E.Y. Emelyanov, M.A.A. Marabeh: $u \tau$-Convergence in locally solid vector lattices. Positivity 22, 1065-1080 (2018)
[6] Y.A. Dabboorasad, E.Y. Emelyanov, M.A.A. Marabeh: Order convergence is not topological in infinite-dimensional vector lattices, Uzb. Mat. Zh. no.1, 159-166 (2020)
[7] E. Emelyanov, S.G. Gorokhova: Free uniformly complete vector lattices. arxiv.org/abs/2109.03895
[8] A.G. Kusraev: Dominated Operators. (2000)
[9] B. de Pagter, A.W. Wickstead: Free and projective Banach lattices. Proc. Roy. Soc. Edinburgh Sect. A 145(1), 105-143 (2015)
[10] A.I. Veksler: Archimedean principle in homomorphic images of l-groups and of vector lattices. Izv. Vyshs. Ucebn. Zaved. Matematika, (1966),
[11] A.I. Veksler: A new construction of Dedekind completion of vector lattices and of I-groups with division. Siberian Math. J. 10 (1969) 891-896.
[12] B.Z. Vulikh: Introduction to the Theory of Partially Ordered Spaces. (1961)
[13] E.C. Weinberg, Free lattice-ordered abelian groups. Math. Annalen 151, 187-199 (1963)

THANK YOU FOR THE ATTENTION!

