Boolean Valued Analysis and Positivity

Anatoly G. Kusraev
Southern Mathematical Institute of the VSC RAS

International Workshop on Functional Analysis (Novosibirsk-Nukus-Vladikavkaz, March 1 - 3, 2023)

Contents

- Historical remarks
- Boolean Valued Analysis
- Maharam Operators
- Injective Banach Lattices
- Some Algebraic Aspects
- Most influential:
G. Cantor, L. V. Kantorovich
K. Gödel, P. J. Cohen
D. Scott, R. Solovay
E. I. Gordon, G. Takeuti
S. S. Kutateladze, A. E. Gutman
M. Ozawa, H. Nishimura

Contents

- Historical remarks
- Boolean Valued Analysis
- Maharam Operators
- Injective Banach Lattices
- Some Algebraic Aspects
- Most influential:
G. Cantor, L. V. Kantorovich
K. Gödel, P. J. Cohen
D. Scott, R. Solovay
E. I. Gordon, G. Takeuti
S. S. Kutateladze, A. E. Gutman
M. Ozawa, H. Nishimura

HISTORICAL REMARKS

International Workshop on Functional An

Background

- Continuum Hypothesis, CH (Cantor, 1878).

Every $A \subset[0,1]$ is either finite, or countable, or continual.

- Kantorovich's Heuristic Transfer Principle (Kantorovich, 1935).

The elements of a Kantorovich space (\equiv Dedekind complete vector lattice) can be considered as generalized reals.

- Theorem (Gödel, 1939).

ZF is consistent $\Longrightarrow \mathrm{ZFC}+\mathrm{CH}$ is consistent.

- Theorem (Cohen, 1963).

ZF is consistent \Longrightarrow ZFC $+\neg \mathrm{CH}$ is consistent.

- D. Scott, R. Solovay, and P. Vopěnka (1967).
\checkmark A comprehensive presentation of the Cohen forcing method.
\checkmark This gave rise to the Boolean valued models of set theory.

Background

- Continuum Hypothesis, CH (Cantor, 1878).

Every $A \subset[0,1]$ is either finite, or countable, or continual.

- Kantorovich's Heuristic Transfer Principle (Kantorovich, 1935).

The elements of a Kantorovich space (\equiv Dedekind complete vector lattice) can be considered as generalized reals.

- Theorem (Gödel, 1939)

ZF is consistent $\Longrightarrow \mathrm{ZFC}+\mathrm{CH}$ is consistent.

- Theorem (Cohen, 1963)

ZF is consistent \Longrightarrow ZFC $+\neg \mathrm{CH}$ is consistent.

- D. Scott, R. Solovay, and P. Vopěnka (1967)
\checkmark A comprehensive presentation of the Cohen forcing method. \checkmark This gave rise to the Boolean valued models of set theory.

Background

- Continuum Hypothesis, CH (Cantor, 1878).

Every $A \subset[0,1]$ is either finite, or countable, or continual.

- Kantorovich's Heuristic Transfer Principle (Kantorovich, 1935).

The elements of a Kantorovich space (\equiv Dedekind complete vector lattice) can be considered as generalized reals.

- Theorem (Gödel, 1939).

ZF is consistent $\Longrightarrow \mathrm{ZFC}+\mathrm{CH}$ is consistent.

ZF is consistent $\Longrightarrow \mathrm{ZFC}+\neg \mathrm{CH}$ is consistent.

- D. Scott, R. Solovay, and P. Vopěnka (1967).
\checkmark A comprehensive presentation of the Cohen forcing method. \checkmark This gave rise to the Boolean valued models of set theory.

Background

- Continuum Hypothesis, CH (Cantor, 1878).

Every $A \subset[0,1]$ is either finite, or countable, or continual.

- Kantorovich's Heuristic Transfer Principle (Kantorovich, 1935).

The elements of a Kantorovich space (\equiv Dedekind complete vector lattice) can be considered as generalized reals.

- Theorem (Gödel, 1939).

ZF is consistent $\Longrightarrow \mathrm{ZFC}+\mathrm{CH}$ is consistent.

- Theorem (Cohen, 1963).

ZF is consistent $\Longrightarrow \mathrm{ZFC}+\neg \mathrm{CH}$ is consistent.

A comprehensive presentation of the Cohen forcing method.
This gave rise to the Boolean valued models of set theory.

Background

- Continuum Hypothesis, CH (Cantor, 1878).

Every $A \subset[0,1]$ is either finite, or countable, or continual.

- Kantorovich's Heuristic Transfer Principle (Kantorovich, 1935).

The elements of a Kantorovich space (\equiv Dedekind complete vector lattice) can be considered as generalized reals.

- Theorem (Gödel, 1939).

ZF is consistent $\Longrightarrow \mathrm{ZFC}+\mathrm{CH}$ is consistent.

- Theorem (Cohen, 1963).

ZF is consistent $\Longrightarrow \mathrm{ZFC}+\neg \mathrm{CH}$ is consistent.

- D. Scott, R. Solovay, and P. Vopěnka (1967).
\checkmark A comprehensive presentation of the Cohen forcing method.
\checkmark This gave rise to the Boolean valued models of set theory.

Dana Scott: 1969, 1977

- D. Scott (Foreword to "Boolean-Valued Models and Independence Proofs in Set Theory" by J. L. Bell, 1977):
\checkmark "It was in 1963 that we were hit by a real bomb, however, when Paul J. Cohen discovered his method of 'forcing', which started a long chain reaction of independence results ... Set theory could never be the same after Cohen."
- D. Scott (1969) foresaw the role of Boolean valued models in
mathematics:
\checkmark "We must ask whether there is any interest in these nonstandard models aside from the independence proof; that is, do they have any mathematical interest? The answer must be yes, but we cannot yet give a really good arguments.

Dana Scott: 1969, 1977

- D. Scott (Foreword to "Boolean-Valued Models and Independence Proofs in Set Theory" by J. L. Bell, 1977):
\checkmark "It was in 1963 that we were hit by a real bomb, however, when Paul J. Cohen discovered his method of 'forcing', which started a long chain reaction of independence results ... Set theory could never be the same after Cohen."
- D. Scott (1969) foresaw the role of Boolean valued models in mathematics:
\checkmark "We must ask whether there is any interest in these nonstandard models aside from the independence proof; that is, do they have any mathematical interest? The answer must be yes, but we cannot yet give a really good arguments."

Boolean Valued Analysis: E. I. Gordon (1977)

- In 1977, Eugene Gordon, a young teacher of Lobachevsky Nizhny Novgorod State University, published a short note
E. I. Gordon, Real numbers in Boolean valued models of set theory and K-spaces, Dokl. Akad. Nauk SSSR, 237(4) (1977), 773-775.

Boolean Valued Analysis: E. I. Gordon (1977)

- In 1977, Eugene Gordon, a young teacher of Lobachevsky Nizhny Novgorod State University, published a short note
E. I. Gordon, Real numbers in Boolean valued models of set theory and K-spaces, Dokl. Akad. Nauk SSSR, 237(4) (1977), 773-775.
- \checkmark "This article establishes that the set whose elements are the objects representing reals in a Boolean valued model of set theory $\mathbb{V}^{(\mathbb{B})}$, can be endowed with the structure of a vector space and an order relation so that it becomes an extended K-space with base \mathbb{B}."

Boolean Valued Analysis: E. I. Gordon (1977)

- In 1977, Eugene Gordon, a young teacher of Lobachevsky Nizhny Novgorod State University, published a short note E. I. Gordon, Real numbers in Boolean valued models of set theory and K-spaces, Dokl. Akad. Nauk SSSR, 237(4) (1977), 773-775.
- \checkmark "This article establishes that the set whose elements are the objects representing reals in a Boolean valued model of set theory $\mathbb{V}^{(\mathbb{B})}$, can be endowed with the structure of a vector space and an order relation so that it becomes an extended K-space with base \mathbb{B}."
- R. Solovay's Problem: Is the assertion "Every subset of \mathbb{R} is Lebesgue measurable" consistent with $\mathrm{ZF}+\mathrm{DC}$ (Dependent choice)?

Boolean Valued Analysis: E. I. Gordon (1977)

- In 1977, Eugene Gordon, a young teacher of Lobachevsky Nizhny Novgorod State University, published a short note E. I. Gordon, Real numbers in Boolean valued models of set theory and K-spaces, Dokl. Akad. Nauk SSSR, 237(4) (1977), 773-775.
- \checkmark "This article establishes that the set whose elements are the objects representing reals in a Boolean valued model of set theory $\mathbb{V}^{(\mathbb{B})}$, can be endowed with the structure of a vector space and an order relation so that it becomes an extended K-space with base \mathbb{B}."
- R. Solovay's Problem: Is the assertion "Every subset of \mathbb{R} is Lebesgue measurable" consistent with $\mathrm{ZF}+\mathrm{DC}$ (Dependent choice)?
- E. I. Gordon: Proved a weaker assertion; he discovered along the way that the algebraic structure of Boolean valued reals is a Kantorovich space, which he learned from the D.A.Vladimirov's "Boolean Algebras".

Boolean Valued Analysis: G. Takeuti (1977)

- In the same year, at the Symposium on Applications of Sheaf Theory to Logic, Algebra, and Analysis (Durham, July 9-11, 1977), Gaisi Takeuti, a renowned expert in proof theory, observed that:
\checkmark The vector lattice of (cosets of) measurable functions can be considered as Boolean valued reals.
\checkmark The commutative algebra of unbounded selfadjoint operators in Hilbert space is another sample of Boolean valued reals.
- G. Takeuti, Two Applications of Logic to Mathematics, Princeton Univ. Press, Princeton, (1978). Part I. Boolean Valued Analysis (pp. 3-65) Part II. A Conservative Extension of Peano Arithmetic (pp. 67-122)

Boolean Valued Analysis: G. Takeuti (1977)

- In the same year, at the Symposium on Applications of Sheaf Theory to Logic, Algebra, and Analysis (Durham, July 9-11, 1977), Gaisi Takeuti, a renowned expert in proof theory, observed that:
\checkmark The vector lattice of (cosets of) measurable functions can be considered as Boolean valued reals.
\checkmark The commutative algebra of unbounded selfadjoint operators in Hilbert space is another sample of Boolean valued reals.
- G. Takeuti, Two Applications of Logic to Mathematics, Princeton Univ. Press, Princeton, (1978).
Part I. Boolean Valued Analysis (pp. 3-65)
Part II. A Conservative Extension of Peano Arithmetic (pp. 67-122)

Boolean Valued Analysis: 1990, 1994

- These two events marked the birth of a new section of analysis, which Takeuti designated by the term Boolean valued analysis.
- A. G. Kusraev and S. S. Kutateladze: Nonstandard Methods of Analysis (Russian, ed. Yu. G. Reshetnyak). Nauka, Siberian Branch, Novosibirsk, 1990. 344 p.; Kluwer Academic Publishers, Dordrecht, 1994. viii+435 pp. (English)
- This volume is devoted to nonstandard methods of analysis based on applying nonstandard models of set theory. The the main trends in this field are Infinitesimal analysis and Boolean valued analysis. Part I. Infinitesimal Analysis (pp. 1-168) Part II. Boolean Valued Analysis (pp. 169-403)

Boolean Valued Analysis: 1990, 1994

- These two events marked the birth of a new section of analysis, which Takeuti designated by the term Boolean valued analysis.
- A. G. Kusraev and S. S. Kutateladze: Nonstandard Methods of Analysis (Russian, ed. Yu. G. Reshetnyak).
Nauka, Siberian Branch, Novosibirsk, 1990. 344 p.;
Kluwer Academic Publishers, Dordrecht, 1994. viii+435 pp. (English)
applying nonstandard models of set theory. The
this field are Infinitesimal analysis and Boolean
Part I. Infinitesimal Analysis (pp. 1-168)
Part II. Boolean Valued Analysis (pp. 169-403)

Boolean Valued Analysis: 1990, 1994

- These two events marked the birth of a new section of analysis, which Takeuti designated by the term Boolean valued analysis.
- A. G. Kusraev and S. S. Kutateladze: Nonstandard Methods of Analysis (Russian, ed. Yu. G. Reshetnyak).
Nauka, Siberian Branch, Novosibirsk, 1990. 344 p.;
Kluwer Academic Publishers, Dordrecht, 1994. viii+435 pp. (English)
- This volume is devoted to nonstandard methods of analysis based on applying nonstandard models of set theory. The the main trends in this field are Infinitesimal analysis and Boolean valued analysis.
Part I. Infinitesimal Analysis (pp. 1-168)
Part II. Boolean Valued Analysis (pp. 169-403)

Boolean Valued Analysis: 1999

- A. G. Kusraev and S. S. Kutateladze, Boolean Valued Analysis, Kluwer Academic Publishers, Dordrecht, 1999. xii+322 pp.
- W. A. J. Luxemburg:
\checkmark This book is a translated by the authors from the Russian edition that started a new series of books entitled "Nonstandard methods of analysis" by the Sobolev Institute Press at Novosibirsk
\checkmark As the title indicates, the book is devoted to the presentation of the theory of Boolean valued models, introduced by D. Scott and R. Solovay in 1960s, and their application to analysis. This is the first monograph of its kind and it fills a gap in the literature on applications of model theory. \checkmark The authors are to be commended for having written such a nice readable account of this sophisticated subject. The historical and philosophical comments sprinkled throughout the text make the reading even more pleasant.

Boolean Valued Analysis: 1999

- A. G. Kusraev and S. S. Kutateladze, Boolean Valued Analysis, Kluwer Academic Publishers, Dordrecht, 1999. xii+322 pp.
- W. A. J. Luxemburg:
\checkmark This book is a translated by the authors from the Russian edition that started a new series of books entitled "Nonstandard methods of analysis" by the Sobolev Institute Press at Novosibirsk.
\checkmark As the title indicates, the book is devoted to the presentation of the theory of Boolean valued models, introduced by D. Scott and R. Solovay in 1960s, and their application to analysis. This is the first monograph of its kind and it fills a gap in the literature on applications of model theory.
\checkmark The authors are to be commended for having written such a nice readable account of this sophisticated subject. The historical and philosophical comments sprinkled throughout the text make the reading even more pleasant.

BOOLEAN VALUED ANALYSIS

International Workshop on Functional An

What Is Boolean Valued Analysis?

- Boolean valued analysis is a branch of functional analysis which uses a special model-theoretic technique and consists in studying the properties of a mathematical object by means of comparison between its representations in two different set-theoretic models whose construction utilizes distinct Boolean algebras.
- The von Neumann universe (Cantorian paradise) \mathbb{V} and a specially selected (constructed) Boolean valued universe $\mathbb{V}^{(\mathbb{B})}$ are taken as these models.
- The comparative analysis requires the following operations: Ascent $X \mapsto X \uparrow\left(\right.$ or $\left.X \mapsto X^{\wedge}\right)$ acting from \mathbb{V} into $\mathbb{V}^{(\mathbb{B})}$; Descent $\mathcal{X} \mapsto \mathcal{X} \downarrow$ acting from $\mathbb{V}(\mathbb{B})$ to \mathbb{V}

What Is Boolean Valued Analysis?

- Boolean valued analysis is a branch of functional analysis which uses a special model-theoretic technique and consists in studying the properties of a mathematical object by means of comparison between its representations in two different set-theoretic models whose construction utilizes distinct Boolean algebras.
- The von Neumann universe (Cantorian paradise) \mathbb{V} and a specially selected (constructed) Boolean valued universe $\mathbb{V}^{(\mathbb{B})}$ are taken as these models.
- The comparative analysis requires the following operations:

What Is Boolean Valued Analysis?

- Boolean valued analysis is a branch of functional analysis which uses a special model-theoretic technique and consists in studying the properties of a mathematical object by means of comparison between its representations in two different set-theoretic models whose construction utilizes distinct Boolean algebras.
- The von Neumann universe (Cantorian paradise) \mathbb{V} and a specially selected (constructed) Boolean valued universe $\mathbb{V}^{(\mathbb{B})}$ are taken as these models.
- The comparative analysis requires the following operations:

Ascent $X \mapsto X \uparrow$ (or $X \mapsto X^{\wedge}$) acting from \mathbb{V} into $\mathbb{V}^{(\mathbb{B})}$;
Descent $\mathcal{X} \mapsto \mathcal{X} \downarrow$ acting from $\mathbb{V}^{(\mathbb{B})}$ to \mathbb{V}.

Verification in Boolean Valued Models

- The ascending-descending machinery enables one to carry out the interplay between \mathbb{V} and $\mathbb{V}^{(\mathbb{B})}$.
- How to make statements about x_{1}

Take a ZF-formula $\varphi=\varphi\left(u_{1}, \ldots, u_{n}\right)$ and replace the variables u_{1}, \ldots, u_{n} by elements $x_{1}, \ldots, x_{n} \in \mathbb{V}^{(\mathbb{B})}$. Then $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is a statement about x_{1}, \ldots, x_{n}.

- How to verify whether or not $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is true in $\mathbb{V}^{(\mathbb{B})}$?

There is a natural way of assigning to each such statement an element of \mathbb{B}, the Boolean truth-value $\llbracket \varphi\left(x_{1}, \ldots, x_{n}\right) \rrbracket \in \mathbb{B}$

- Definition. $\mathbb{V}^{(\mathbb{B})} \models \varphi\left(x_{1}, \ldots, x_{n}\right) \Longleftrightarrow \llbracket \varphi\left(x_{1}, \ldots, x_{n}\right) \rrbracket=\mathbb{1}$. $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is valid within $\mathbb{V}^{(\mathbb{B})} \Longleftrightarrow \llbracket \varphi\left(x_{1}, \ldots, x_{n}\right) \rrbracket=\mathbb{1}$.
- The Transfer Principle. All the theorems of ZFC are true in $\mathbb{V}(\mathbb{B})$

Verification in Boolean Valued Models

- The ascending-descending machinery enables one to carry out the interplay between \mathbb{V} and $\mathbb{V}^{(\mathbb{B})}$.
- How to make statements about $\left.x_{1}, \ldots, x_{n} \in \mathbb{V}^{(\mathbb{B}}\right)$?

Take a ZF-formula $\varphi=\varphi\left(u_{1}, \ldots, u_{n}\right)$ and replace the variables u_{1}, \ldots, u_{n} by elements $x_{1}, \ldots, x_{n} \in \mathbb{V}^{(\mathbb{B})}$. Then $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is a statement about x_{1}, \ldots, x_{n}.

- How to verify whether or not $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is true in $\mathbb{V}^{(\mathbb{B})}$? There is a natural way of assigning to each such statement an element of \mathbb{B}, the Boolean truth-value $\llbracket \varphi\left(x_{1}, \ldots, x_{n}\right) \rrbracket \in \mathbb{B}$
- Definition. $\mathbb{V}^{(\mathbb{B})}=\varphi\left(x_{1}, \ldots, x_{n}\right) \Longleftrightarrow \llbracket \varphi\left(x_{1}, \ldots, x_{n}\right) \rrbracket=\mathbb{1}$

- The Transfer Principle. All the theorems of ZFC are true in $\mathbb{V}^{(\mathbb{B})}$

Verification in Boolean Valued Models

- The ascending-descending machinery enables one to carry out the interplay between \mathbb{V} and $\mathbb{V}^{(\mathbb{B})}$.
- How to make statements about $\left.x_{1}, \ldots, x_{n} \in \mathbb{V}^{(\mathbb{B}}\right)$?

Take a ZF-formula $\varphi=\varphi\left(u_{1}, \ldots, u_{n}\right)$ and replace the variables u_{1}, \ldots, u_{n} by elements $x_{1}, \ldots, x_{n} \in \mathbb{V}^{(\mathbb{B})}$. Then $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is a statement about x_{1}, \ldots, x_{n}.

- How to verify whether or not $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is true in $\mathbb{V}^{(\mathbb{B})}$? There is a natural way of assigning to each such statement an element of \mathbb{B}, the Boolean truth-value $\llbracket \varphi\left(x_{1}, \ldots, x_{n}\right) \rrbracket \in \mathbb{B}$

Verification in Boolean Valued Models

- The ascending-descending machinery enables one to carry out the interplay between \mathbb{V} and $\mathbb{V}^{(\mathbb{B})}$.
- How to make statements about $\left.x_{1}, \ldots, x_{n} \in \mathbb{V}^{(\mathbb{B}}\right)$?

Take a ZF-formula $\varphi=\varphi\left(u_{1}, \ldots, u_{n}\right)$ and replace the variables u_{1}, \ldots, u_{n} by elements $x_{1}, \ldots, x_{n} \in \mathbb{V}^{(\mathbb{B})}$. Then $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is a statement about x_{1}, \ldots, x_{n}.

- How to verify whether or not $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is true in $\mathbb{V}^{(\mathbb{B})}$? There is a natural way of assigning to each such statement an element of \mathbb{B}, the Boolean truth-value $\llbracket \varphi\left(x_{1}, \ldots, x_{n}\right) \rrbracket \in \mathbb{B}$
- Definition. $\mathbb{V}^{(\mathbb{B})} \models \varphi\left(x_{1}, \ldots, x_{n}\right) \Longleftrightarrow \llbracket \varphi\left(x_{1}, \ldots, x_{n}\right) \rrbracket=\mathbb{1}$. $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is valid within $\mathbb{V}(\mathbb{B}) \Longleftrightarrow \llbracket \varphi\left(x_{1}, \ldots, x_{n}\right) \rrbracket=\mathbb{1}$.

Verification in Boolean Valued Models

- The ascending-descending machinery enables one to carry out the interplay between \mathbb{V} and $\mathbb{V}^{(\mathbb{B})}$.
- How to make statements about $\left.x_{1}, \ldots, x_{n} \in \mathbb{V}^{(\mathbb{B}}\right)$?

Take a ZF-formula $\varphi=\varphi\left(u_{1}, \ldots, u_{n}\right)$ and replace the variables u_{1}, \ldots, u_{n} by elements $x_{1}, \ldots, x_{n} \in \mathbb{V}^{(\mathbb{B})}$. Then $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is a statement about x_{1}, \ldots, x_{n}.

- How to verify whether or not $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is true in $\mathbb{V}^{(\mathbb{B})}$? There is a natural way of assigning to each such statement an element of \mathbb{B}, the Boolean truth-value $\llbracket \varphi\left(x_{1}, \ldots, x_{n}\right) \rrbracket \in \mathbb{B}$
- Definition. $\mathbb{V}^{(\mathbb{B})} \models \varphi\left(x_{1}, \ldots, x_{n}\right) \Longleftrightarrow \llbracket \varphi\left(x_{1}, \ldots, x_{n}\right) \rrbracket=\mathbb{1}$. $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is valid within $\mathbb{V}(\mathbb{B}) \Longleftrightarrow \llbracket \varphi\left(x_{1}, \ldots, x_{n}\right) \rrbracket=\mathbb{1}$.
- The Transfer Principle. All the theorems of ZFC are true in $\mathbb{V}^{(\mathbb{B})}$.

How does the Boolean valued transfer principle work?

- Let $\mathbf{X} \subset \mathbb{V}$ and $\mathbb{X} \subset \mathbb{V}^{(\mathbb{B})}$ be two classes of mathematical objects. Suppose we are able to prove the result:
- Boolean Valued Representation. Every $X \in X$ embeds into an Boolean valued model, becoming an object $\mathcal{X} \in \mathbb{X}$ within $\mathbb{V}^{(\mathbb{B})}$
- Boolean V/alued Transfer Princinle Fvery theorem about \mathcal{X} within ZFC has its counterpart for the original object X interpreted as a Boolean valued object \mathcal{X}
- Roolean Valued Machinery Translation of theorems from $\mathcal{X} \in \mathbb{V}(\mathbb{B})$ to $X \in \mathbb{V}$ is carried out by the appropriate general operations (ascending-descending) and the principles of Boolean valued analysis. Analysis, Moscow, Nauka, 2005 (Russian)

How does the Boolean valued transfer principle work?

- Let $\mathbf{X} \subset \mathbb{V}$ and $\mathbb{X} \subset \mathbb{V}^{(\mathbb{B})}$ be two classes of mathematical objects. Suppose we are able to prove the result:
- Boolean Valued Representation. Every $X \in \mathbf{X}$ embeds into an Boolean valued model, becoming an object $\mathcal{X} \in \mathbb{X}$ within $\mathbb{V}^{(\mathbb{B})}$.
- Boolean Valued Transfer Principle. Every theorem about \mathcal{X} within ZFC has its counterpart for the original object X interpreted as a Boolean valued object \mathcal{X}.
- Boolean Valued Machinery. Translation of theorems from $\mathcal{X} \in \mathbb{V}^{(\mathbb{B})}$ to $X \in \mathbb{V}$ is carried out by the appropriate general operations (ascending-descending) and the principles of Boolean valued analysis. Analysis, Moscow, Nauka, 2005 (Russian).

How does the Boolean valued transfer principle work?

- Let $\mathbf{X} \subset \mathbb{V}$ and $\mathbb{X} \subset \mathbb{V}^{(\mathbb{B})}$ be two classes of mathematical objects. Suppose we are able to prove the result:
- Boolean Valued Representation. Every $X \in \mathbf{X}$ embeds into an Boolean valued model, becoming an object $\mathcal{X} \in \mathbb{X}$ within $\mathbb{V}^{(\mathbb{B})}$.
- Boolean Valued Transfer Principle. Every theorem about \mathcal{X} within ZFC has its counterpart for the original object X interpreted as a Boolean valued object \mathcal{X}.
$X \in \mathbb{V}$ is carried out by the appropriate general operations (ascending-descending) and the principles of Boolean valued analysis. Analysis, Moscow, Nauka, 2005 (Russian).

How does the Boolean valued transfer principle work?

- Let $\mathbf{X} \subset \mathbb{V}$ and $\mathbb{X} \subset \mathbb{V}^{(\mathbb{B})}$ be two classes of mathematical objects. Suppose we are able to prove the result:
- Boolean Valued Representation. Every $X \in \mathbf{X}$ embeds into an Boolean valued model, becoming an object $\mathcal{X} \in \mathbb{X}$ within $\mathbb{V}^{(\mathbb{B})}$.
- Boolean Valued Transfer Principle. Every theorem about \mathcal{X} within ZFC has its counterpart for the original object X interpreted as a Boolean valued object \mathcal{X}.
- Boolean Valued Machinery. Translation of theorems from $\mathcal{X} \in \mathbb{V}^{(\mathbb{B})}$ to $X \in \mathbb{V}$ is carried out by the appropriate general operations (ascending-descending) and the principles of Boolean valued analysis.

Analysis, Moscow, Nauka, 2005 (Russian).

How does the Boolean valued transfer principle work?

- Let $\mathbf{X} \subset \mathbb{V}$ and $\mathbb{X} \subset \mathbb{V}^{(\mathbb{B})}$ be two classes of mathematical objects. Suppose we are able to prove the result:
- Boolean Valued Representation. Every $X \in \mathbf{X}$ embeds into an Boolean valued model, becoming an object $\mathcal{X} \in \mathbb{X}$ within $\mathbb{V}^{(\mathbb{B})}$.
- Boolean Valued Transfer Principle. Every theorem about \mathcal{X} within ZFC has its counterpart for the original object X interpreted as a Boolean valued object \mathcal{X}.
- Boolean Valued Machinery. Translation of theorems from $\mathcal{X} \in \mathbb{V}^{(\mathbb{B})}$ to $X \in \mathbb{V}$ is carried out by the appropriate general operations (ascending-descending) and the principles of Boolean valued analysis.
- A. G. Kusraev and S. S. Kutateladze: Introduction to Boolean Valued Analysis, Moscow, Nauka, 2005 (Russian).

Gordon Theorem: Boolean Valued Reals

- Theorem (Gordon, 1977). Let \mathbb{B} be a complete Boolean algebra, \mathcal{R} be the field of reals within $\mathbb{V}^{(\mathbb{B})}$. Then the following hold:
(1) \mathbb{R}^{\wedge} is a dense subfield of \mathcal{R} within $\mathbb{V}^{(\mathbb{B})}$.
(2) The algebraic structure $\mathcal{R} \downarrow$ is a universally complete vector lattice.
(3) There is a Boolean isomorphism χ from \mathbb{B} onto $\mathbb{P}(\mathcal{R} \downarrow)$ such that for all $x, y \in \mathcal{R} \downarrow ; b \in \mathbb{B}$ the equivalences hold:

$$
\begin{aligned}
& \chi(b) x=\chi(b) y \Longleftrightarrow b \leq \llbracket x=y \rrbracket, \\
& \chi(b) x \leq \chi(b) y \Longleftrightarrow b \leq \llbracket x \leq y \rrbracket .
\end{aligned}
$$

A. G. Kusraev and S. S. Kutateladze, Boolean Valued Analysis:
Background and Results, In: Operator Theory and Differential Equations, Springer, 2021, 91-105.

Gordon Theorem: Boolean Valued Reals

- Theorem (Gordon, 1977). Let \mathbb{B} be a complete Boolean algebra, \mathcal{R} be the field of reals within $\mathbb{V}^{(\mathbb{B})}$. Then the following hold:
(1) \mathbb{R}^{\wedge} is a dense subfield of \mathcal{R} within $\mathbb{V}^{(\mathbb{B})}$.
(2) The algebraic structure $\mathcal{R} \downarrow$ is a universally complete vector lattice.
(3) There is a Boolean isomorphism χ from \mathbb{B} onto $\mathbb{P}(\mathcal{R} \downarrow)$ such that for all $x, y \in \mathcal{R} \downarrow ; b \in \mathbb{B}$ the equivalences hold:

$$
\begin{aligned}
& \chi(b) x=\chi(b) y \Longleftrightarrow b \leq \llbracket x=y \rrbracket, \\
& \chi(b) x \leq \chi(b) y \Longleftrightarrow b \leq \llbracket x \leq y \rrbracket .
\end{aligned}
$$

- A. G. Kusraev and S. S. Kutateladze, Boolean Valued Analysis: Background and Results, In: Operator Theory and Differential Equations, Springer, 2021, 91-105.

Some Problems and Solutions. I

The problem	Raised by Stems from	Reduced to (by means of BA)	Solved by
Intrinsic characterization of subdifferentials	Kutateladze 1976	Weakly compact convex sets of functionals	Kusraev Kutateladze 1982
General desintegration in Kantorovich spaces	loffe, Levin Neumann $1972 / 1977$	 Radon-Nikodým theorems	Kusraev 1984
Kaplansky Problem: Homogeneity of a type I AW*-algebra	Kaplansky 1953	Homogeneity of B(H) with H Hilbert space	Ozawa

Some Problems and Solutions. II

The problem	Raised by Stems from	Reduced to (by means of BA)	Solved by
Order boundedness of BP operators, The Wickstead problem	Wickstead 1977	Cauchy type functional equations	Gutman Kusraev 1995,2006
Maharam extension of a positive operator	Luxemburg Schep 1978	Daniel extension of an elementary integral	Akilov Kolesnikov Kusraev 1988
Goodearl problem 18 in "Von Neumann Regular Rings," RR	Goodearl 1979	Theorem 12.16 in RR	Chupin 1991

Some Problems and Solutions. III

The problem	Raised by Stems from	Reduced to (by means of BA):	Solved by
Description of T with $\|T\|$ a sum of 2 ℓ-homomorphisms	Grothendieck 1955	Description of functionals with the same property	Kutateladze 2005
Classification of injective Banach lattices	Lotz Cartright 1975	Classification of AL-space $\left(L_{1}\right.$ spaces $)$	Kusraev 2012
Band preserving isomorphic copies of a VL	Abramovich and Kitover 2000	Extensions of fields	Kusraev 2021

Some Problems and Solutions. IV

The problem	Raised by Stems from	Reduced to (by means of BA)	Solved by
Ando type theorem in the category of \mathbb{B}-cyclic BL	Ando 1969	Ando's joint characterization of L^{p} and c_{0}	Kusraev Kutateladze 2019
Geometric characterization of preduals of injective Banach lattices	Lindenstrauss Sharacterization of L^{1}-preduals	Kusraev Kutateladze 2020	
Geometric Characterization of injective Banach lattices	Ellis la64	Characterization of L^{1} spaces	Kusraev Kutateladze 2021

MAHARAM OPERATORS

International Workshop on Functional An

Maharam Operators: Definition

- Definition. A linear operator $T: X \rightarrow Y$ is order interval preserving (or enjoys the Maharam property) if $T[0, x]=[0, T x]\left(x \in X_{+}\right)$,

$$
\left(\forall x \in X_{+}\right)(\forall y \in Y) 0 \leq y \leq T x \rightarrow(\exists 0 \leq u \leq x) T u=y
$$

- Definition. A Maharam operator is an order continuous linear operator whose modulus has the Maharam property.
- Definition. A positive operator $T: X \rightarrow Y$ has the Levi property if $Y=T(X)^{\perp \perp}$ and $\sup x_{\alpha}$ exists in X for every increasing net $\left(x_{\alpha}\right) \subset X_{+}$, provided that the net $\left(T x_{\alpha}\right)$ is order bounded in Y.
- The concept of Maharam operator stems from the articles by Dorothy Maharam on the representation of positive operators: The representation of abstract integrals, TAMS 75 (1953), 154-184; On kernel representation of linear operators, TAMS 79 (1955), 229-255

Maharam Operators: Definition

- Definition. A linear operator $T: X \rightarrow Y$ is order interval preserving (or enjoys the Maharam property) if $T[0, x]=[0, T x]\left(x \in X_{+}\right)$,

$$
\left(\forall x \in X_{+}\right)(\forall y \in Y) 0 \leq y \leq T x \rightarrow(\exists 0 \leq u \leq x) T u=y
$$

- Definition. A Maharam operator is an order continuous linear operator whose modulus has the Maharam property.

Maharam Operators: Definition

- Definition. A linear operator $T: X \rightarrow Y$ is order interval preserving (or enjoys the Maharam property) if $T[0, x]=[0, T x]\left(x \in X_{+}\right)$,

$$
\left(\forall x \in X_{+}\right)(\forall y \in Y) 0 \leq y \leq T x \rightarrow(\exists 0 \leq u \leq x) T u=y .
$$

- Definition. A Maharam operator is an order continuous linear operator whose modulus has the Maharam property.
- Definition. A positive operator $T: X \rightarrow Y$ has the Levi property if $Y=T(X)^{\perp \perp}$ and $\sup x_{\alpha}$ exists in X for every increasing net $\left(x_{\alpha}\right) \subset X_{+}$, provided that the net $\left(T x_{\alpha}\right)$ is order bounded in Y.

Dorothy Maharam on the representation of positive operators: The representation of abstract integrals, TAMS 75 (1953), 154-184; On kernel representation of linear operators, TAMS 79 (1955), 229-255.

Maharam Operators: Definition

- Definition. A linear operator $T: X \rightarrow Y$ is order interval preserving (or enjoys the Maharam property) if $T[0, x]=[0, T x]\left(x \in X_{+}\right)$,

$$
\left(\forall x \in X_{+}\right)(\forall y \in Y) 0 \leq y \leq T x \rightarrow(\exists 0 \leq u \leq x) T u=y .
$$

- Definition. A Maharam operator is an order continuous linear operator whose modulus has the Maharam property.
- Definition. A positive operator $T: X \rightarrow Y$ has the Levi property if $Y=T(X)^{\perp \perp}$ and $\sup x_{\alpha}$ exists in X for every increasing net $\left(x_{\alpha}\right) \subset X_{+}$, provided that the net $\left(T x_{\alpha}\right)$ is order bounded in Y.
- The concept of Maharam operator stems from the articles by Dorothy Maharam on the representation of positive operators: The representation of abstract integrals, TAMS 75 (1953), 154-184; On kernel representation of linear operators, TAMS 79 (1955), 229-255.

Luxemburg and Maharam

- Luxemburg was the first to appreciate Maharam's contribution. In his joint articles with Schep and de Pagter some portion of Maharam's theory was extended to positive operators.
- Luxemburg was a pioneer and promoter of blending model theory and functional analysis. He pointed out that the Maharam operators may play a fundamental role not only in the theory of positive operators but also in Boolean valued analysis; see, the Maharam anniversary volume: Measures and measurable dynamics, Rochester, New York, 1987, Amer Math. Soc, Providence, 1989, 177-183.

Luxemburg and Maharam

- Luxemburg was the first to appreciate Maharam's contribution. In his joint articles with Schep and de Pagter some portion of Maharam's theory was extended to positive operators.
- Luxemburg was a pioneer and promoter of blending model theory and functional analysis. He pointed out that the Maharam operators may play a fundamental role not only in the theory of positive operators but also in Boolean valued analysis; see, the Maharam anniversary volume: Measures and measurable dynamics, Rochester, New York, 1987, Amer. Math. Soc, Providence, 1989, 177-183.

Nakano, Hahn, and Radon-Nikodým Theorems

- Nakano carrier Theorem. Given two order continuous linear functionals $f, g: X \rightarrow \mathbb{R}$, the equivalence holds: $f \perp g \longleftrightarrow C_{f} \perp C_{g}$.
- Radon-Nikodým Theorem. For a pair of order continuous linear functionals $f, g: X \rightarrow \mathbb{R}$ we have $|g| \leq f$ if and only if there exists an orthomorphism $\omega \in \operatorname{Orth}(X)$ such that $g=f \circ \omega$.
- Hahn Decomposition Theorem. For any order continuous linear functional $f: X \rightarrow \mathbb{R}$ there exists a band projection $\pi \in \mathbb{P}(X)$ such that $f^{+}=f \circ \pi$ and $f^{-}=f \circ \pi^{\perp}$ with $\pi^{\perp}=I_{X}-\pi$.
- The Claim: Nakano carrier Theorem, Radon-Nikodým Theorem, and Hahn Decomposition Theorem are valid for Maharam operators. W. A. J. Luxemburg and A. R. Schep, A Radon-Nikodým theorem for positive operators and a dual, Indag. Math. 40 (1978), 357-375. W. A. J. Luxemburg and B. de Pagter, Maharam extension of poitive operators and f-algebras, Positivity, 6:2 (2002), 147-190.

Nakano, Hahn, and Radon-Nikodým Theorems

- Nakano carrier Theorem. Given two order continuous linear functionals $f, g: X \rightarrow \mathbb{R}$, the equivalence holds: $f \perp g \longleftrightarrow C_{f} \perp C_{g}$.
- Radon-Nikodým Theorem. For a pair of order continuous linear functionals $f, g: X \rightarrow \mathbb{R}$ we have $|g| \leq f$ if and only if there exists an orthomorphism $\omega \in \operatorname{Orth}(X)$ such that $g=f \circ \omega$.

Nakano, Hahn, and Radon-Nikodým Theorems

- Nakano carrier Theorem. Given two order continuous linear functionals $f, g: X \rightarrow \mathbb{R}$, the equivalence holds: $f \perp g \longleftrightarrow C_{f} \perp C_{g}$.
- Radon-Nikodým Theorem. For a pair of order continuous linear functionals $f, g: X \rightarrow \mathbb{R}$ we have $|g| \leq f$ if and only if there exists an orthomorphism $\omega \in \operatorname{Orth}(X)$ such that $g=f \circ \omega$.
- Hahn Decomposition Theorem. For any order continuous linear functional $f: X \rightarrow \mathbb{R}$ there exists a band projection $\pi \in \mathbb{P}(X)$ such that $f^{+}=f \circ \pi$ and $f^{-}=f \circ \pi^{\perp}$ with $\pi^{\perp}=I_{X}-\pi$.

\square M. A. J. Luxemburg and B. de Pagter, Maharam extension of poitive operators and f-algebras, Positivity, 6:2 (2002), 147-190.

Nakano, Hahn, and Radon-Nikodým Theorems

- Nakano carrier Theorem. Given two order continuous linear functionals $f, g: X \rightarrow \mathbb{R}$, the equivalence holds: $f \perp g \longleftrightarrow C_{f} \perp C_{g}$.
- Radon-Nikodým Theorem. For a pair of order continuous linear functionals $f, g: X \rightarrow \mathbb{R}$ we have $|g| \leq f$ if and only if there exists an orthomorphism $\omega \in \operatorname{Orth}(X)$ such that $g=f \circ \omega$.
- Hahn Decomposition Theorem. For any order continuous linear functional $f: X \rightarrow \mathbb{R}$ there exists a band projection $\pi \in \mathbb{P}(X)$ such that $f^{+}=f \circ \pi$ and $f^{-}=f \circ \pi^{\perp}$ with $\pi^{\perp}=I_{X}-\pi$.
- The Claim: Nakano carrier Theorem, Radon-Nikodým Theorem, and Hahn Decomposition Theorem are valid for Maharam operators.
W. A. J. Luxemburg and A. R. Schep, A Radon-Nikodým theorem for positive operators and a dual, Indag. Math. 40 (1978), 357-375.
W. A. J. Luxemburg and B. de Pagter, Maharam extension of poitive operators and f-algebras, Positivity, 6:2 (2002), 147-190.

Boolean Valued Representation

- Every Maharam operator can be embedded in appropriate $\mathbb{V}^{(\mathbb{B})}$, turning thereby into an order continuous functional.

Boolean Valued Representation

- Every Maharam operator can be embedded in appropriate $\mathbb{V}^{(\mathbb{B})}$, turning thereby into an order continuous functional.
- Theorem (Kusraev 1982). Let X be a Dedekind complete vector lattice, $Y:=\mathcal{R} \downarrow$, and let $T: X \rightarrow Y$ be a positive Maharam operator with $Y=T(X)^{\perp \perp}$. Then there are $\mathcal{X}, \tau \in \mathbb{V}^{(\mathbb{B})}$ satisfying:
(1) $\llbracket \mathcal{X}$ is a Dedekind complete vector lattice and $\tau: \mathcal{X} \rightarrow \mathcal{R}$ is an o-continuous strictly positive functional with the Levi property $\rrbracket=\mathbb{1}$. (2) $\mathcal{X} \downarrow$ is a Dedekind complete vector lattice and a unital f-module over the f-algebra $\mathcal{R} \downarrow$.
(3) $\tau \downarrow: \mathcal{X} \downarrow \rightarrow \mathcal{R} \downarrow$ is a strictly positive Maharam operator with the Levi property and an $\mathcal{R} \downarrow$-module homomorphism.
(4) There is an o-continuous lattice homomorphism $\varphi: X \rightarrow \mathcal{X} \downarrow$ such that $\varphi(X)$ is order dense ideal of $\mathcal{X} \downarrow$ and $T=\tau \downarrow \circ \varphi$.

Strassen Disintegration Theorem

- A range of important questions in convex analysis and probability theory is connected with Strassen-type disintegration theorems. This name was fixed due to the publication:
- V. Strassen, The existence of probability measures with given marginals, Ann. Math. Statist. 36 1965), 423-439.
- Theorem 1 in this paper states that linear functional dominated by sublinear (convex) integral functional can be obtained by integrating a measurable family of linear functionals, each majorized by the corresponding convex functional $\left(x^{\prime} \in X^{\prime}, p_{\omega}: X \rightarrow \mathbb{R}, \omega \in \Omega\right)$:

Strassen Disintegration Theorem

- A range of important questions in convex analysis and probability theory is connected with Strassen-type disintegration theorems. This name was fixed due to the publication:
- V. Strassen, The existence of probability measures with given marginals, Ann. Math. Statist. 36 1965), 423-439.
sublinear (convex) integral functional can be obtained by integrating a measurable family of linear functionals, each majorized by the corresponding convex functional $\left(X^{\prime} \in X^{\prime}, p_{\omega}: X \rightarrow \mathbb{R}, \omega \in \Omega\right)$:

Strassen Disintegration Theorem

- A range of important questions in convex analysis and probability theory is connected with Strassen-type disintegration theorems. This name was fixed due to the publication:
- V. Strassen, The existence of probability measures with given marginals, Ann. Math. Statist. 36 1965), 423-439.
- Theorem 1 in this paper states that linear functional dominated by sublinear (convex) integral functional can be obtained by integrating a measurable family of linear functionals, each majorized by the corresponding convex functional ($x^{\prime} \in X^{\prime}, p_{\omega}: X \rightarrow \mathbb{R}, \omega \in \Omega$):

$$
\begin{aligned}
\left\langle x, x^{\prime}\right\rangle & \leq \int_{\Omega} p_{\omega}(x) d \mu(\omega) \quad(x \in X) \Longrightarrow\left(\exists \omega \mapsto x_{\omega}^{\prime} \in X^{\prime}\right) \\
\left\langle x, x_{\omega}^{\prime}\right\rangle & \leq p_{\omega}(x) \quad(\omega \in \Omega) \text { and }\left\langle x, x^{\prime}\right\rangle=\int_{\Omega}\left\langle x, x_{\omega}^{\prime}\right\rangle d \mu(\omega) \quad(x \in X)
\end{aligned}
$$

Abstract Disintegration

- Definition. $P: V \rightarrow X$ is sublinear if $P(u+v) \leq P(u)+P(v)$ and $P(\lambda u)=\lambda P(u)$ for all $u, v \in V$ and $\lambda \in \mathbb{R}_{+}$.
- Notation. $\partial P:=\{S \in L(V, X):(\forall u \in V) S u \leq P(u)\}$. $T \circ \partial P=\{T \circ S: S \in \partial P\}$
- Abstract Desintegration Theorem (Kusraev, 1984). Let X and Y be some Dedekind complete vector lattices and $T: X \rightarrow Y$ a positive Maharam operator. Given arbitrary vector space V and sublinear operator $P: V \rightarrow X$, the desintegration formula holds:
- A. G. Kusraev and S. S. Kutateladze, Subdifferentials: Theory and Applications, Kluwer, Dordrecht, 1995. ix +398 p.

Abstract Disintegration

- Definition. $P: V \rightarrow X$ is sublinear if $P(u+v) \leq P(u)+P(v)$ and $P(\lambda u)=\lambda P(u)$ for all $u, v \in V$ and $\lambda \in \mathbb{R}_{+}$.
- Notation. $\partial P:=\{S \in L(V, X):(\forall u \in V) S u \leq P(u)\}$.

$$
T \circ \partial P=\{T \circ S: S \in \partial P\}
$$

- Abstract Desintegration Theorem (Kusraev, 1984). Let X and Y
be some Dedekind complete vector lattices and $T: X \rightarrow Y$ a positive Maharam operator. Given arbitrary vector space V and sublinear operator $P: V \rightarrow X$, the desintegration formula holds:
- A. G. Kusraev and S. S. Kutateladze, Subdifferentials: Theory and Applications, Kluwer, Dordrecht, 1995. ix +398 p.

Abstract Disintegration

- Definition. $P: V \rightarrow X$ is sublinear if $P(u+v) \leq P(u)+P(v)$ and $P(\lambda u)=\lambda P(u)$ for all $u, v \in V$ and $\lambda \in \mathbb{R}_{+}$.
- Notation. $\partial P:=\{S \in L(V, X):(\forall u \in V) S u \leq P(u)\}$.

$$
T \circ \partial P=\{T \circ S: S \in \partial P\} .
$$

- Abstract Desintegration Theorem (Kusraev, 1984). Let X and Y be some Dedekind complete vector lattices and $T: X \rightarrow Y$ a positive Maharam operator. Given arbitrary vector space V and sublinear operator $P: V \rightarrow X$, the desintegration formula holds:

$$
\partial(T \circ P)=T \circ(\partial P)
$$

- A. G. Kusraev and S. S. Kutateladze, Subdifferentials: Theory and Applications, Kluwer, Dordrecht, 1995. ix +398 p.

Abstract Disintegration

- Definition. $P: V \rightarrow X$ is sublinear if $P(u+v) \leq P(u)+P(v)$ and $P(\lambda u)=\lambda P(u)$ for all $u, v \in V$ and $\lambda \in \mathbb{R}_{+}$.
- Notation. $\partial P:=\{S \in L(V, X):(\forall u \in V) S u \leq P(u)\}$.

$$
T \circ \partial P=\{T \circ S: S \in \partial P\}
$$

- Abstract Desintegration Theorem (Kusraev, 1984). Let X and Y be some Dedekind complete vector lattices and $T: X \rightarrow Y$ a positive Maharam operator. Given arbitrary vector space V and sublinear operator $P: V \rightarrow X$, the desintegration formula holds:

$$
\partial(T \circ P)=T \circ(\partial P)
$$

- A. G. Kusraev and S. S. Kutateladze, Subdifferentials: Theory and Applications, Kluwer, Dordrecht, 1995. ix+398 p.

INJECTIVE BANACH LATTICES

Injective Banach Lattices: Definition

- Definition. An injective Banach lattice is a real BL X such that:

$$
(\forall Y)\left(\forall Y_{0}\right)\left(\forall T_{0}\right)
$$

- This amounts to saying that the diagram commutes, i. e. $T_{0}=T \circ \iota$ with $\left\|T_{0}\right\|=\|T\|$:

Injective Banach Lattices: Examples

- Lotz was the first who examined the IBL. In his work, H. P. Lotz, Trans. Amer. Math. Soc., 211 (1975), 85-100, he indicated among other things two important classes of IBL.
- Theorem (Lotz, 1975) A Dedekind complete AM-space with unit is an IBL. Equivalently, $C(K)$ is an IBL, whenever K is extremally disconnected Hausdorff compact space.
- Theorem (Lotz, 1975). Every AL-space is an IBL.
- The first result is not surprising, since $C(K)$ is an injective object in the category BS_{1} of Banach lattices and linear contractions.
- The second one shows that there is an essential difference between IBL and IBS, as $C(K)$ is the only (up to isometric isomorphism) injective object in BS_{1}

Injective Banach Lattices: Examples

- Lotz was the first who examined the IBL. In his work, H. P. Lotz, Trans. Amer. Math. Soc., 211 (1975), 85-100, he indicated among other things two important classes of IBL.
- Theorem (Lotz, 1975) A Dedekind complete $A M$-space with unit is an IBL. Equivalently, $C(K)$ is an IBL, whenever K is extremally disconnected Hausdorff compact space.

Injective Banach Lattices: Examples

- Lotz was the first who examined the IBL. In his work, H. P. Lotz, Trans. Amer. Math. Soc., 211 (1975), 85-100, he indicated among other things two important classes of IBL.
- Theorem (Lotz, 1975) A Dedekind complete $A M$-space with unit is an IBL. Equivalently, $C(K)$ is an IBL, whenever K is extremally disconnected Hausdorff compact space.
- Theorem (Lotz, 1975). Every $A L$-space is an IBL.

Injective Banach Lattices: Examples

- Lotz was the first who examined the IBL. In his work, H. P. Lotz, Trans. Amer. Math. Soc., 211 (1975), 85-100, he indicated among other things two important classes of IBL.
- Theorem (Lotz, 1975) A Dedekind complete AM-space with unit is an IBL. Equivalently, $C(K)$ is an IBL, whenever K is extremally disconnected Hausdorff compact space.
- Theorem (Lotz, 1975). Every $A L$-space is an IBL.
- The first result is not surprising, since $C(K)$ is an injective object in the category BS $_{1}$ of Banach lattices and linear contractions.
- The second one shows
IBL and IBS, as $C(K)$
injective object in $B S_{1}$.

Injective Banach Lattices: Examples

- Lotz was the first who examined the IBL. In his work, H. P. Lotz, Trans. Amer. Math. Soc., 211 (1975), 85-100, he indicated among other things two important classes of IBL.
- Theorem (Lotz, 1975) A Dedekind complete $A M$-space with unit is an IBL. Equivalently, $C(K)$ is an IBL, whenever K is extremally disconnected Hausdorff compact space.
- Theorem (Lotz, 1975). Every $A L$-space is an IBL.
- The first result is not surprising, since $C(K)$ is an injective object in the category $\mathbf{B S}_{1}$ of Banach lattices and linear contractions.
- The second one shows that there is an essential difference between IBL and IBS, as $C(K)$ is the only (up to isometric isomorphism) injective object in $\mathbf{B S}_{1}$.

Injective Banach Lattices: Characterization

- D. I. Cartwright, Mem. Amer. Math. Soc., 164 (1975), 1-48.
\diamond The finite order IP \Longleftrightarrow The splitting property.
$\diamond \mathrm{A} \mathrm{BL} X$ has the splitting property $\Longleftrightarrow X^{\prime \prime}$ is an IBL.
- R. Haydon, Math. Z. 156 (1977), 19-47.
\diamond Discovered that an IBL has a mixed $A M$ - $A L$-structure. \diamond Proved three representation theorems for IBL.
- W. Arendt, G. Buskes, J. Lindenstrauss, L. Tzafriri, P. J. Mangheni, A. Wickstead.

Injective Banach Lattices: Characterization

- D. I. Cartwright, Mem. Amer. Math. Soc., 164 (1975), 1-48.
\diamond The finite order IP \Longleftrightarrow The splitting property.
$\diamond \mathrm{A} \mathrm{BL} X$ has the splitting property $\Longleftrightarrow X^{\prime \prime}$ is an IBL.
- R. Haydon, Math. Z. 156 (1977), 19-47.
\diamond Discovered that an IBL has a mixed $A M$ - $A L$-structure.
\diamond Proved three representation theorems for IBL.
P. J. Mangheni, A. Wickstead.

Injective Banach Lattices: Characterization

- D. I. Cartwright, Mem. Amer. Math. Soc., 164 (1975), 1-48.
\diamond The finite order IP \Longleftrightarrow The splitting property.
$\diamond \mathrm{A} \mathrm{BL} X$ has the splitting property $\Longleftrightarrow X^{\prime \prime}$ is an IBL.
- R. Haydon, Math. Z. 156 (1977), 19-47.
\diamond Discovered that an IBL has a mixed $A M$ - $A L$-structure.
\diamond Proved three representation theorems for IBL.
- W. Arendt, G. Buskes, J. Lindenstrauss, L. Tzafriri, P. J. Mangheni, A. Wickstead.

A Boolean-Valued Transfer Principle

- Theorem (Kusraev, 2011). Every IBL embeds into an appropriate Boolean-valued model, becoming an AL-space.
- A. G. Kusraev, Boolean-Valued Analysis and Injective Banach Lattices, Doklady Ros. Akademii Nauk, 444 (2012), 143-145.
- A Transfer Principle. Every theorem about the AL-space within ZFC has its counterpart for the original injective Banach lattice interpreted as a Boolean-valued AL-space.
- The Machinery. Translation of theorems from AL-spaces to injective Banach lattices is carried out by appropriate general operations and principles of Boolean-valued analysis.

A Boolean-Valued Transfer Principle

- Theorem (Kusraev, 2011). Every IBL embeds into an appropriate Boolean-valued model, becoming an AL-space.
- A. G. Kusraev, Boolean-Valued Analysis and Injective Banach Lattices, Doklady Ros. Akademii Nauk, 444 (2012), 143-145.
- A Transfer Principle. Every theorem about the AL-space within ZFC has its counterpart for the original injective Banach lattice interpreted as a Boolean-valued AL-space.
- The Machinery. Translation of theorems from AL-spaces to injective Banach lattices is carried out by appropriate general operations and principles of Boolean-valued analysis.

A Boolean-Valued Transfer Principle

- Theorem (Kusraev, 2011). Every IBL embeds into an appropriate Boolean-valued model, becoming an AL-space.
- A. G. Kusraev, Boolean-Valued Analysis and Injective Banach Lattices, Doklady Ros. Akademii Nauk, 444 (2012), 143-145.
- A Transfer Principle. Every theorem about the $A L$-space within ZFC has its counterpart for the original injective Banach lattice interpreted as a Boolean-valued $A L$-space.
- The Machinery. Translation of theorems from AL-spaces to injective Banach lattices is carried out by appropriate general operations and principles of Boolean-valued analysis.

A Boolean-Valued Transfer Principle

- Theorem (Kusraev, 2011). Every IBL embeds into an appropriate Boolean-valued model, becoming an AL-space.
- A. G. Kusraev, Boolean-Valued Analysis and Injective Banach Lattices, Doklady Ros. Akademii Nauk, 444 (2012), 143-145.
- A Transfer Principle. Every theorem about the $A L$-space within ZFC has its counterpart for the original injective Banach lattice interpreted as a Boolean-valued $A L$-space.
- The Machinery. Translation of theorems from $A L$-spaces to injective Banach lattices is carried out by appropriate general operations and principles of Boolean-valued analysis.

A Representation Result

- Definition. A positive operator $T: X \rightarrow Y$ is said to have the Levi property if $\sup x_{\alpha}$ exists in X for every increasing net $\left(x_{\alpha}\right) \subset X_{+}$, provided that the net ($T x_{\alpha}$) is order bounded in Y.
- Theorem (Kusraev, 2011). For a Banach lattice X the following assertions are equivalent:
(1) X is injective.
(2) There exists a Dedekind complete AM-space Λ with unit and a strictly positive Maharam operator $\Phi: X \rightarrow \Lambda(\Phi(|x|)=0 \Longrightarrow x=0)$ with the Levi property such that the representation holds:

$$
\|x\|=\|\Phi(|x|)\|_{\infty} \quad(x \in X) .
$$

- A. G. Kusraev and S. S. Kutateladze, Boolean Valued Analysis: Selected Topics, Vladikavkaz, VSC RAS (2014)

A Representation Result

- Definition. A positive operator $T: X \rightarrow Y$ is said to have the Levi property if $\sup x_{\alpha}$ exists in X for every increasing net $\left(x_{\alpha}\right) \subset X_{+}$, provided that the net ($T x_{\alpha}$) is order bounded in Y.
- Theorem (Kusraev, 2011). For a Banach lattice X the following assertions are equivalent:
(1) X is injective.
(2) There exists a Dedekind complete $A M$-space Λ with unit and a strictly positive Maharam operator $\Phi: X \rightarrow \Lambda(\Phi(|x|)=0 \Longrightarrow x=0)$ with the Levi property such that the representation holds:

$$
\|x\|=\|\Phi(|x|)\|_{\infty} \quad(x \in X)
$$

- A. G. Kusraev and S. S. Kutateladze, Boolean Valued Analysis: Selected Topics, Vladikavkaz, VSC RAS (2014).

A Representation Result

- Definition. A positive operator $T: X \rightarrow Y$ is said to have the Levi property if $\sup x_{\alpha}$ exists in X for every increasing net $\left(x_{\alpha}\right) \subset X_{+}$, provided that the net ($T x_{\alpha}$) is order bounded in Y.
- Theorem (Kusraev, 2011). For a Banach lattice X the following assertions are equivalent:
(1) X is injective.
(2) There exists a Dedekind complete $A M$-space Λ with unit and a strictly positive Maharam operator $\Phi: X \rightarrow \Lambda(\Phi(|x|)=0 \Longrightarrow x=0)$ with the Levi property such that the representation holds:

$$
\|x\|=\|\Phi(|x|)\|_{\infty} \quad(x \in X)
$$

- A. G. Kusraev and S. S. Kutateladze, Boolean Valued Analysis: Selected Topics, Vladikavkaz, VSC RAS (2014).

Representation of AL-Spaces

- Theorem (Kakutani-Maharam). Let X be an $A L$-space. Then there exists a unique cardinal α and a unique family of cardinals $\left(\mathfrak{m}_{\gamma}\right)_{\gamma \in \Gamma}$ with Γ being a set of infinite cardinals such that each \mathfrak{m}_{γ} is either equal to 1 , or is uncountable, and

$$
X \simeq I^{1}(\alpha) \oplus \sum_{\gamma \in \Gamma}{ }^{\oplus} \mathfrak{m}_{\gamma} L^{1}\left([0,1]^{\gamma}\right)
$$

where \simeq denotes lattice isometry, \oplus and \sum^{\oplus} denote I^{1}-joins, $[0,1]^{\gamma}$ is product of gamma copies of unit interval with Lebesgue measure.

Actually, every IBL have a similar representation, so that Dedekind complete $A M$-spaces with unit ($C(K)$ with extremal compactum K) and $A L$-spaces (L^{1}) are the 'building blocks' for general IBL.

Representation of AL-Spaces

- Theorem (Kakutani-Maharam). Let X be an $A L$-space. Then there exists a unique cardinal α and a unique family of cardinals $\left(\mathfrak{m}_{\gamma}\right)_{\gamma \in \Gamma}$ with Γ being a set of infinite cardinals such that each \mathfrak{m}_{γ} is either equal to 1 , or is uncountable, and

$$
X \simeq I^{1}(\alpha) \oplus \sum_{\gamma \in \Gamma} \oplus_{\mathfrak{m}_{\gamma}} L^{1}\left([0,1]^{\gamma}\right)
$$

where \simeq denotes lattice isometry, \oplus and \sum^{\oplus} denote I^{1}-joins, $[0,1]^{\gamma}$ is product of gamma copies of unit interval with Lebesgue measure.

- Thus $I^{1}(\alpha)$ and $L^{1}\left([0,1]^{\gamma}\right)$ are building blocks for any $A L$-space. Actually, every IBL have a similar representation, so that Dedekind complete $A M$-spaces with unit ($C(K)$ with extremal compactum K) and $A L$-spaces (L^{1}) are the 'building blocks' for general IBL.

Representation of Injective Banach Lattices

Theorem (Kusraev, 2012). Let X be an arbitrary IBL.

- $X=X_{1} \boxplus X_{2}$ with X_{1} atomic and X_{2} purely non-atomic.
- There exist a set of cardinals A and a partition of unity $\left(\pi_{\alpha}\right)_{\alpha \in \mathrm{A}}$ in $\mathbb{M}\left(X_{1}\right)$ such that $\left(\Lambda_{\alpha}=\pi_{\alpha}(\Lambda)\right)$:

- There exists a set of infinite cardinals Γ and for every $\gamma \in \Gamma$ there is a set $\mathbf{B}(\gamma)$ with each $\beta \in \mathbf{B}(\gamma)$ being either equal to 1 , or is uncountable, and there is a disjoint family $\left(\pi_{\beta \gamma}\right)_{\beta \in \mathrm{B}(\gamma)}$ with $I_{X_{2}}=\bigvee_{\gamma \in \Gamma} \bigvee_{\beta \in \mathrm{B}(\gamma)} \pi_{\beta \gamma}$, such that $\left(\Lambda_{\beta \gamma}=\pi_{\beta \gamma}(\Lambda)\right)$:

Representation of Injective Banach Lattices

Theorem (Kusraev, 2012). Let X be an arbitrary IBL.

- $X=X_{1} \boxplus X_{2}$ with X_{1} atomic and X_{2} purely non-atomic.
- There exist a set of cardinals A and a partition of unity $\left(\pi_{\alpha}\right)_{\alpha \in \mathrm{A}}$ in $\mathbb{M}\left(X_{1}\right)$ such that $\left(\Lambda_{\alpha}=\pi_{\alpha}(\Lambda)\right)$:

$$
X_{1} \simeq_{\mathbb{B}}\left(\sum_{\alpha \in \mathrm{A}} \Lambda_{\alpha} \otimes_{\varepsilon|\pi|} I^{1}(\alpha)\right)_{\infty}
$$

- There exists a set of infinite cardinals Γ and for every $\gamma \in \Gamma$ there is a set $\mathrm{B}(\gamma)$ with each $\beta \in \mathrm{B}(\gamma)$ being either equal to 1 , or is uncountable, and there is a disjoint family $\left(\pi_{\beta \gamma}\right)_{\beta \in \mathrm{B}(\gamma)}$ with

Representation of Injective Banach Lattices

Theorem (Kusraev, 2012). Let X be an arbitrary IBL.

- $X=X_{1} \boxplus X_{2}$ with X_{1} atomic and X_{2} purely non-atomic.
- There exist a set of cardinals A and a partition of unity $\left(\pi_{\alpha}\right)_{\alpha \in \mathrm{A}}$ in $\mathbb{M}\left(X_{1}\right)$ such that $\left(\Lambda_{\alpha}=\pi_{\alpha}(\Lambda)\right)$:

$$
X_{1} \simeq_{\mathbb{B}}\left(\sum_{\alpha \in \mathrm{A}} \Lambda_{\alpha} \otimes_{\varepsilon|\pi|} I^{1}(\alpha)\right)_{\infty}
$$

- There exists a set of infinite cardinals Γ and for every $\gamma \in \Gamma$ there is a set $\mathrm{B}(\gamma)$ with each $\beta \in \mathrm{B}(\gamma)$ being either equal to 1 , or is uncountable, and there is a disjoint family $\left(\pi_{\beta \gamma}\right)_{\beta \in \mathrm{B}(\gamma)}$ with $I_{X_{2}}=\bigvee_{\gamma \in \Gamma} \bigvee_{\beta \in \mathrm{B}(\gamma)} \pi_{\beta \gamma}$, such that $\left(\Lambda_{\beta \gamma}=\pi_{\beta \gamma}(\Lambda)\right)$:

$$
X_{2} \simeq_{\mathbb{B}} \sum_{\gamma \in \Gamma}^{\boxplus}\left(\sum_{\beta \in \mathrm{B}(\gamma)} \beta \diamond\left(\Lambda_{\beta \gamma} \otimes_{\varepsilon|\pi|} L^{1}\left([0,1]^{\gamma}\right)\right)\right)_{\infty}
$$

SOME ALGEBRAIC ASPECTS

International Workshop on Functional An

Abramovich-Kitover Problem

- Definition. A linear operator $T: X \rightarrow Y$ between vector lattices is disjointness preserving (DP) if T sends disjoint elements in X to disjoint elements in Y and d-isomorphism if T and T^{-1} are DP. - Y. A. Abramovich and A. K. Kitover, Inverses of Disjointness Preserving Operators, Mem. AMS, 143(679), Providence, R. I., 2000. - Problem B: Let X, Y be vector lattices and T d-isomorphism. Are then X and Y order isomorphic?
- Theorem 14.17. In the class of Dedekind complete vector lattices Problem B has an affirmative solution. That is, if $T: X \rightarrow Y$ is a d-isomorphism between two Dedekind complete vector lattices, then these vector lattices are order isomorphic.

Abramovich-Kitover Problem

- Definition. A linear operator $T: X \rightarrow Y$ between vector lattices is disjointness preserving (DP) if T sends disjoint elements in X to disjoint elements in Y and d-isomorphism if T and T^{-1} are DP.
- Y. A. Abramovich and A. K. Kitover, Inverses of Disjointness Preserving Operators, Mem. AMS, 143(679), Providence, R. I., 2000.

Abramovich-Kitover Problem

- Definition. A linear operator $T: X \rightarrow Y$ between vector lattices is disjointness preserving (DP) if T sends disjoint elements in X to disjoint elements in Y and d-isomorphism if T and T^{-1} are DP.
- Y. A. Abramovich and A. K. Kitover, Inverses of Disjointness Preserving Operators, Mem. AMS, 143(679), Providence, R. I., 2000.
- Problem B: Let X, Y be vector lattices and $T: X \rightarrow Y$ a d-isomorphism. Are then X and Y order isomorphic?

Problem B has an affirmative solution. That is, if $T: X \rightarrow Y$ is a d-isomorphism between two Dedekind complete vector lattices, then these vector lattices are order isomorphic.

Abramovich-Kitover Problem

- Definition. A linear operator $T: X \rightarrow Y$ between vector lattices is disjointness preserving (DP) if T sends disjoint elements in X to disjoint elements in Y and d-isomorphism if T and T^{-1} are DP.
- Y. A. Abramovich and A. K. Kitover, Inverses of Disjointness Preserving Operators, Mem. AMS, 143(679), Providence, R. I., 2000.
- Problem B: Let X, Y be vector lattices and $T: X \rightarrow Y$ a d-isomorphism. Are then X and Y order isomorphic?
- Theorem 14.17. In the class of Dedekind complete vector lattices Problem B has an affirmative solution. That is, if $T: X \rightarrow Y$ is a d-isomorphism between two Dedekind complete vector lattices, then these vector lattices are order isomorphic.

Counterexamples

- The answer to Problem B is negative in general.
- Theorem 13.4 (Abramovich, Kitover). There exist a universally complete vector lattice W and a vector sublattice W_{0} of W such that W_{0} and W are d-isomorphic but are not order isomorphic.

Counterexamples

- The answer to Problem B is negative in general.
- Theorem 13.4 (Abramovich, Kitover). There exist a universally complete vector lattice W and a vector sublattice W_{0} of W such that W_{0} and W are d-isomorphic but are not order isomorphic.
- Definition. A linear operator $T: X \rightarrow Y$ is called band preserving (BP for short), if $T(L) \subset L$ for every band $L \subset X$ and b-isomorphism if both T and T^{-1} are band preserving.
- Corollary. In Theorem 13.4, a vector sublattice $W_{0} \subset W$ can be chosen to be b-isomorphic to the ambient vector lattice W.

Counterexamples

- The answer to Problem B is negative in general.
- Theorem 13.4 (Abramovich, Kitover). There exist a universally complete vector lattice W and a vector sublattice W_{0} of W such that W_{0} and W are d-isomorphic but are not order isomorphic.
- Definition. A linear operator $T: X \rightarrow Y$ is called band preserving (BP for short), if $T(L) \subset L$ for every band $L \subset X$ and b-isomorphism if both T and T^{-1} are band preserving.
- Corollary. In Theorem 13.4, a vector sublattice $W_{0} \subset W$ can be chosen to be b-isomorphic to the ambient vector lattice W.

Counterexamples

- The answer to Problem B is negative in general.
- Theorem 13.4 (Abramovich, Kitover). There exist a universally complete vector lattice W and a vector sublattice W_{0} of W such that W_{0} and W are d-isomorphic but are not order isomorphic.
- Definition. A linear operator $T: X \rightarrow Y$ is called band preserving (BP for short), if $T(L) \subset L$ for every band $L \subset X$ and b-isomorphism if both T and T^{-1} are band preserving.
- Corollary. In Theorem 13.4, a vector sublattice $W_{0} \subset W$ can be chosen to be b-isomorphic to the ambient vector lattice W.
- Problem B': How many distinct vector sublattices can a vector lattice have, each of which is b-isomorphic to the original vector lattice?

Boolean Valued Representation

- Theorem. Assume that Let $\mathbb{R}^{\wedge} \subset \mathcal{X} \subset \mathcal{R}, \mathcal{X}$ is a subfield of \mathcal{R}, $X:=\mathcal{X} \downarrow$, and $Y:=\mathcal{R} \downarrow$. Every BP operator $T: X \rightarrow Y$ is representable as (the descent of) a \mathbb{R}^{\wedge}-linear function $\tau: \mathcal{X} \rightarrow \mathcal{R}$.
- Query. It is important to know whether $\mathcal{R}=\mathbb{R}^{\wedge}$ is true.
- Definition. A Boolean algebra \mathbb{B} is said to be σ-distributive if, for any double sequence $\left(b_{m}^{n}\right)_{n, m \in \mathbb{N}}$ in \mathbb{B}, the equality holds

Boolean Valued Representation

- Theorem. Assume that Let $\mathbb{R}^{\wedge} \subset \mathcal{X} \subset \mathcal{R}, \mathcal{X}$ is a subfield of \mathcal{R}, $X:=\mathcal{X} \downarrow$, and $Y:=\mathcal{R} \downarrow$. Every BP operator $T: X \rightarrow Y$ is representable as (the descent of) a \mathbb{R}^{\wedge}-linear function $\tau: \mathcal{X} \rightarrow \mathcal{R}$.
- Query. It is important to know whether $\mathcal{R}=\mathbb{R}^{\wedge}$ is true.
- Definition. A Boolean algebra \mathbb{B} is said to be σ-distributive if, for any double sequence $\left(b_{m}^{n}\right)_{n, m \in \mathbb{N}}$ in \mathbb{B}, the equality holds

Boolean Valued Representation

- Theorem. Assume that Let $\mathbb{R}^{\wedge} \subset \mathcal{X} \subset \mathcal{R}, \mathcal{X}$ is a subfield of \mathcal{R}, $X:=\mathcal{X} \downarrow$, and $Y:=\mathcal{R} \downarrow$. Every BP operator $T: X \rightarrow Y$ is representable as (the descent of) a \mathbb{R}^{\wedge}-linear function $\tau: \mathcal{X} \rightarrow \mathcal{R}$.
- Query. It is important to know whether $\mathcal{R}=\mathbb{R}^{\wedge}$ is true.
- Definition. A Boolean algebra \mathbb{B} is said to be σ-distributive if, for any double sequence $\left(b_{m}^{n}\right)_{n, m \in \mathbb{N}}$ in \mathbb{B}, the equality holds

$$
\bigwedge_{n \in \mathbb{N}} \bigvee_{m \in \mathbb{N}} b_{m}^{n}=\bigvee_{m \in \mathbb{N}^{\mathbb{N}}} \bigwedge_{n \in \mathbb{N}} b_{m(n)}^{n}
$$

Boolean Valued Representation

- Theorem. Assume that Let $\mathbb{R}^{\wedge} \subset \mathcal{X} \subset \mathcal{R}, \mathcal{X}$ is a subfield of \mathcal{R}, $X:=\mathcal{X} \downarrow$, and $Y:=\mathcal{R} \downarrow$. Every BP operator $T: X \rightarrow Y$ is representable as (the descent of) a \mathbb{R}^{\wedge}-linear function $\tau: \mathcal{X} \rightarrow \mathcal{R}$.
- Query. It is important to know whether $\mathcal{R}=\mathbb{R}^{\wedge}$ is true.
- Definition. A Boolean algebra \mathbb{B} is said to be σ-distributive if, for any double sequence $\left(b_{m}^{n}\right)_{n, m \in \mathbb{N}}$ in \mathbb{B}, the equality holds

$$
\bigwedge_{n \in \mathbb{N}} \bigvee_{m \in \mathbb{N}} b_{m}^{n}=\bigvee_{m \in \mathbb{N}^{\mathbb{N}}} \bigwedge_{n \in \mathbb{N}} b_{m(n)}^{n}
$$

- Definition. A universally complete $\mathrm{VL} X$ with order unit $\mathbb{1}$ is locally one-dimensional if every $x \in X_{+}$has the form $x=\sum_{\xi} \lambda_{\xi} \pi_{\xi} \mathbb{1}$, where $\left(\lambda_{\xi}\right) \subset \mathbb{R}_{+}$and $\left(\pi_{\xi}\right)$ a family of pairwise band projections.

σ-Distributivity and Locally One-dimensionality

- Theorem (Gutman, 1995). Let \mathbb{B} be a complete Boolean algebra and \mathcal{R} the field of reals within $\mathbb{V}(\mathbb{B})$. The following are equivalent:
(1) \mathbb{B} is σ-distributive.
(2) $\mathcal{R} \downarrow$ is locally one-dimensional.
(3) $\mathbb{V}^{(\mathbb{B})} \models \mathcal{R}=\mathbb{R}^{\wedge}\left(\equiv \mathcal{R}\right.$ is one-dimensional over $\left.\mathbb{R}^{\wedge}\right)$. finite extension. Consequently, if $\mathbb{R} \neq \mathbb{P}$ then \mathbb{R} is an infinite dimensional vector space over \mathbb{P}
- W. A. Coppel, Foundations of Convex Geometry, Cambridge: Cambridge Univ. Press, 1988 (Lemma 17).

σ-Distributivity and Locally One-dimensionality

- Theorem (Gutman, 1995). Let \mathbb{B} be a complete Boolean algebra and \mathcal{R} the field of reals within $\mathbb{V}(\mathbb{B})$. The following are equivalent:
(1) \mathbb{B} is σ-distributive.
(2) $\mathcal{R} \downarrow$ is locally one-dimensional.
(3) $\mathbb{V}^{(\mathbb{B})} \models \mathcal{R}=\mathbb{R}^{\wedge}\left(\equiv \mathcal{R}\right.$ is one-dimensional over $\left.\mathbb{R}^{\wedge}\right)$.
- Lemma. The field of reals \mathbb{R} has no proper subfield \mathbb{P} of which it is a finite extension. Consequently, if $\mathbb{R} \neq \mathbb{P}$ then \mathbb{R} is an infinite dimensional vector space over \mathbb{P}.

Cambridge Univ. Press, 1988 (Lemma 17).

σ-Distributivity and Locally One-dimensionality

- Theorem (Gutman, 1995). Let \mathbb{B} be a complete Boolean algebra and \mathcal{R} the field of reals within $\mathbb{V}(\mathbb{B})$. The following are equivalent:
(1) \mathbb{B} is σ-distributive.
(2) $\mathcal{R} \downarrow$ is locally one-dimensional.
(3) $\mathbb{V}^{(\mathbb{B})} \models \mathcal{R}=\mathbb{R}^{\wedge}\left(\equiv \mathcal{R}\right.$ is one-dimensional over $\left.\mathbb{R}^{\wedge}\right)$.
- Lemma. The field of reals \mathbb{R} has no proper subfield \mathbb{P} of which it is a finite extension. Consequently, if $\mathbb{R} \neq \mathbb{P}$ then \mathbb{R} is an infinite dimensional vector space over \mathbb{P}.
- W. A. Coppel, Foundations of Convex Geometry, Cambridge: Cambridge Univ. Press, 1988 (Lemma 17).

Solution to Problem B'

- A. G. Kusraev and S. S. Kutateladze, Two applications of Boolean valued analysis, Siberian Math. J., 2019, 60:5, 902-910.

Solution to Problem B'

- A. G. Kusraev and S. S. Kutateladze, Two applications of Boolean valued analysis, Siberian Math. J., 2019, 60:5, 902-910.
- Theorem 3.5. Let X be a universally complete vector lattice not containing nonzero locally one-dimensional bands. Then there are component-wise closed laterally complete vector sublattices $X_{1} \subset X$ and $X_{2} \subset X$ and linear bijections $T_{1}: X_{1} \rightarrow X$ and $T_{2}: X_{2} \rightarrow X$ s.th.
(1) $X=X_{1} \oplus X_{2}$ and $X=X_{1}^{\perp \perp}=X_{2}^{\perp \perp}$.
(2) The canonical projections $\pi_{1}: X \rightarrow X_{1}$ and $\pi_{2}: X \rightarrow X_{2}$ are BP.
(3) T_{k} and T_{k}^{-1} are BP for $k=1,2$.
(4) None of the sublattices X_{1} and X_{2} is order complete and so is not lattice isomorphic to X.

Another solution to problem B^{\prime}

- A. G. Kusraev, Some Algebraic Aspects of Boolean Valued Analysis, In: Operator Theory and Harmonic Analysis Springer, 2021, 333-344.

Another solution to problem B^{\prime}

- A. G. Kusraev, Some Algebraic Aspects of Boolean Valued Analysis, In: Operator Theory and Harmonic Analysis Springer, 2021, 333-344.
- Notation. $[A]_{\sigma}:=\left\{\sum_{n=1}^{\infty} \pi_{k} a_{k}:\left(a_{k}\right) \subset A,\left(\pi_{k}\right) \in \operatorname{Prt}(\mathbb{P}(X))\right\}$.

Another solution to problem B^{\prime}

- A. G. Kusraev, Some Algebraic Aspects of Boolean Valued Analysis, In: Operator Theory and Harmonic Analysis Springer, 2021, 333-344.
- Notation. $[A]_{\sigma}:=\left\{\sum_{n=1}^{\infty} \pi_{k} a_{k}:\left(a_{k}\right) \subset A,\left(\pi_{k}\right) \in \operatorname{Prt}(\mathbb{P}(X))\right\}$.
- Theorem 3.8. Assume that a real universally complete vector lattice X is strictly Hamel x-homogeneous for some infinite cardinal \varkappa. Then there exists a family $\left(X_{\alpha}\right)_{\alpha \leq \varkappa}$ of component-wise closed and laterally complete vector sublattices $X_{\alpha} \subset X$ satisfying the conditions:
(1) $X=\left[\bigoplus_{\alpha \leq \varkappa} X_{\alpha}\right]_{\sigma}$ and $X=X_{\alpha}^{\perp \perp}$ for all $\alpha \leq \varkappa$.
(2) The canonical projection $\pi_{\alpha}: X \rightarrow X_{\alpha}$ are all band preserving.
(3) X_{α} is d-isomorphic to X for all $\alpha \leq \varkappa$.
(4) X_{α} is not Dedekind complete and hence not lattice isomorphic to X for all $\alpha \leq \varkappa$.

Reduction to Field Extension

- Theorem. Let $\mathbb{P} \nsubseteq \mathbb{R}$. There exists an infinite cardinal \varkappa and a family $\left(\mathcal{X}_{\alpha}\right)_{\alpha<\varkappa}$ of \mathbb{P}-linear subspace in \mathbb{R} such that $\mathbb{R}=\bigoplus_{\alpha<\varkappa} \mathcal{X}_{\alpha}$ and, for every $\alpha<\varkappa$, the \mathbb{P}-vector spaces \mathcal{X}_{α} and \mathbb{R} are isomorphic, whilst they are not isomorphic as ordered vector spaces over \mathbb{P}.

It follows that there is a family of subsets $\mathcal{E}_{\alpha} \subset \mathcal{E}(\alpha<\varkappa)$ such that

Reduction to Field Extension

- Theorem. Let $\mathbb{P} \varsubsetneqq \mathbb{R}$. There exists an infinite cardinal \varkappa and a family $\left(\mathcal{X}_{\alpha}\right)_{\alpha<\varkappa}$ of \mathbb{P}-linear subspace in \mathbb{R} such that $\mathbb{R}=\bigoplus_{\alpha<\varkappa} \mathcal{X}_{\alpha}$ and, for every $\alpha<\varkappa$, the \mathbb{P}-vector spaces \mathcal{X}_{α} and \mathbb{R} are isomorphic, whilst they are not isomorphic as ordered vector spaces over \mathbb{P}.
- Proof. Let \mathcal{E} be a Hamel basis of a \mathbb{P}-vector space \mathbb{R} and $\varkappa:=|\mathcal{E}|$. Since \varkappa is an infinite cardinal, we have

$$
\varkappa=\sum_{\alpha<\varkappa} \varkappa_{\alpha}, \quad \varkappa_{\alpha}=\varkappa(\alpha<\varkappa) .
$$

It follows that there is a family of subsets $\mathcal{E}_{\alpha} \subset \mathcal{E}(\alpha<\varkappa)$ such that

$$
\mathcal{E}=\bigcup_{\alpha<\varkappa} \mathcal{E}_{\alpha}, \quad\left|\mathcal{E}_{\alpha}\right|=|\mathcal{E}|, \quad \mathcal{E}_{\alpha} \cap \mathcal{E}_{\beta}=\varnothing \quad(\alpha \neq \beta)
$$

If $\mathcal{X}_{\alpha} \subset \mathbb{R}$ is the \mathbb{P}-subspace spanned by \mathcal{E}_{α}, then $\mathcal{X}_{\alpha} \nsubseteq \mathbb{R}, \mathcal{X}_{\alpha} \simeq_{\mathbb{P}} \mathbb{R}$.

Reduction to Field Extension

- Theorem. Let $\mathbb{P} \nsubseteq \mathbb{R}$. There exists an infinite cardinal \varkappa and a family $\left(\mathcal{X}_{\alpha}\right)_{\alpha<\varkappa}$ of \mathbb{P}-linear subspace in \mathbb{R} such that $\mathbb{R}=\bigoplus_{\alpha<\varkappa} \mathcal{X}_{\alpha}$ and, for every $\alpha<\varkappa$, the \mathbb{P}-vector spaces \mathcal{X}_{α} and \mathbb{R} are isomorphic, whilst they are not isomorphic as ordered vector spaces over \mathbb{P}.
- Proof. Let \mathcal{E} be a Hamel basis of a \mathbb{P}-vector space \mathbb{R} and $\varkappa:=|\mathcal{E}|$. Since \varkappa is an infinite cardinal, we have

$$
\varkappa=\sum_{\alpha<\varkappa} \varkappa_{\alpha}, \quad \varkappa_{\alpha}=\varkappa(\alpha<\varkappa) .
$$

It follows that there is a family of subsets $\mathcal{E}_{\alpha} \subset \mathcal{E}(\alpha<\varkappa)$ such that

$$
\mathcal{E}=\bigcup_{\alpha<\varkappa} \mathcal{E}_{\alpha}, \quad\left|\mathcal{E}_{\alpha}\right|=|\mathcal{E}|, \quad \mathcal{E}_{\alpha} \cap \mathcal{E}_{\beta}=\varnothing \quad(\alpha \neq \beta)
$$

If $\mathcal{X}_{\alpha} \subset \mathbb{R}$ is the \mathbb{P}-subspace spanned by \mathcal{E}_{α}, then $\mathcal{X}_{\alpha} \nsubseteq \mathbb{R}, \mathcal{X}_{\alpha} \simeq_{\mathbb{P}} \mathbb{R}$.

- If \mathcal{X}_{α} and \mathbb{R} were isomorphic as ordered vector spaces over \mathbb{P}, then \mathcal{X} would be order complete and we would have $\mathcal{X}_{\alpha}=\mathbb{R}$; a contradiction.

The End

THANK YOU FOR ATTENTION!

