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Ïîëèíîìû â âåêòîðíûõ ðåøåòêàõ îáëàäàþò èíòåðåñíûìè ïîðÿäêîâûìè ñâîéñòâàìè,
à êëàññû ïîëèíîìîâ â áàíàõîâûõ ðåøåòêàõ, îïðåäåëÿåìûå â ñìåøàííûõ òåðìèíàõ íîðìû
è ïîðÿäêà, èìåþò áîãàòóþ ñòðóêòóðó. Ïîýòîìó ýòè îáúåêòû âûçûâàþò ðàñòóùèé èíòåðåñ èñ-
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æåíèÿ, îñíîâàííûå íà âûïóêëîñòè è îòäåëèìîñòè, â ñâÿçè ñ ÷åì áûëè ðàçðàáîòàíû íîâûå
ïîäõîäû è ïðèåìû. Öåëü íàñòîÿùåé ðàáîòû � ðàñïðîñòðàíèòü óêàçàííûé êðóã èäåé ñ ëè-
íåéíûõ îïåðàòîðîâ íà ïîëèíîìû è èçó÷èòü óñëîâèÿ âûïóêëîñòè äëÿ îäíîðîäíûõ ïîëèíîìîâ
â êâàçèáàíàõîâûõ ðåøåòêàõ.
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1. Introduction

Polynomials on vector lattices possess interesting order properties, and the

classes of polynomials on Banach lattices, de�ned in mixed terms of norm and

order, have rich structure. This is why the subject draw growing attention of

researchers. Historically, the study of special sets of homogeneous polynomials

between Banach spaces is motivated by in�nite-dimensional holomorphy (see

Dineen [15] and Mujica [47]) and the theory of nonlinear ideals stemming from

Pietsch's paper [49] (for historical roots see also Bernardino, Pellegrino, Seoane-

Sepulveda, and Souza [4]). While the algebraic and linear-topological properties

of polynomials as well as the relations between polynomials and the geometry

of Banach spaces have a long history and are well covered in literature (see, for

example, [15]), the study of the order properties of polynomials on vector and

Banach lattices has began recently: the papers by Sundaresan [53] and Grecu and

Ryan [16] should be considered as two starting points. For recent advances we refer

to [2, 3, 7, 18, 34, 35, 37, 38, 48, 54] (see also recent PhD theses [36, 39, 41]) and

the references therein.

The classes of (p, q)-convex and (p, q)-concave linear operators on Banach lattices

introduced by Krivine [28] (the case p = q) and Maurey [44] (the general case), as

well as the conceptions of type and cotype introduced by Maurey and Pisier [45] play

an important role in the theory of Banach lattices and bounded linear operators,

see Diestel, Jarchow, and Tong [14], Lindenstrauss and Tzafriri [40], Schwarz [52].

It was shown by Kalton in [21�24] that all these concepts and many related

results may be naturally transplanted to the environment of quasi-Banach spaces,

see also [26]. Kalton o�ered new approaches and invented a variety of tools, since

convexity arguments do not work well in arbitrary quasi-Banach spaces because of

the weaker triangle inequality.

This work is an attempt to extend the above circle of ideas from linear case to the

polynomial setting and examine convexity conditions for homogeneous polynomials

on quasi-Banach lattices. The paper is organized as follows.

In Section 2 we brie�y sketch the needed information concerning quasi-Banach

lattices and homogeneous polynomials. In Section 3 we gather some auxiliary

facts concerning the concavi�cation of quasi-Banach lattices. The main tool is the

homogeneous functional calculus introduced by Krivine [28] and Lozanovski�� [42]

which works also in quasi-Banach lattices (see also Cuartero and Triana [12],

Lindenstrauss and Tzafriri [40], Popa [50], Szulga [55]).

In Section 4 we introduce (p, q)-convex homogeneous polynomials and study

relations between convexities. We extend monotonicity of convexity and inter-

polation of distinct convexities to the context of homogeneous polynomials on qua-

si-Banach spaces. Some important technical tools are adopted from Cuartero and

Triana [13], Kalton [21�23], and Szulga [55].
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Kalton characterized in [23, Theorem 2.2] the class of quasi-Banach lattices

which are p-convex for some 0 < p ∈ R by means of L-convexity. He also proved

in [22, Theorem 4.2] that a quasi-Banach space of Rademacher type p is p-convex.

In Section 5 we prove similar results for homogeneous polynomials.

In Section 6 we give conditions under which a homogeneous disjointness

preserving polynomial P between quasi-Banach lattices admits a factorization

through an Lp(µ)-space, either in the form P = Q ◦ T , or in the form P = T ◦ Q
where Q is a disjointness preserving homogeneous polynomial and T is a lattice

homomorphism. Section 7 deals with the special case of homogeneous orthogonally

additive polynomials. The properties of this class of polynomials resemble very much

those of linear operators and, in particular, admits good factorization. In Section 8,

following Raynaud and Tradacete [51], we show that a p-convex homogeneous

polynomial can be factored through a p-convex quasi-Banach lattice and this fact

enables us to obtain Krivine's type factorization for homogeneous polynomials.

Section 9 is devoted to the question: When is the quasi-Banach lattice of regular

linear operators or polynomials between quasi Banach lattices (p, q)-convex, or (p, q)-

concave, or geometrically convex?

We use the standard notation and terminology of Aliprantis and Burkinshaw [1]

and Meyer-Niberg [46] for the theory of vector and Banach lattices and of Dineen [15]

for the theory of polynomials. In the present paper we assume that all vector spaces

are de�ned over the �eld of reals and all vector lattices are Archimedean.

We let := denote the assignment by de�nition, while N and R symbolize the

naturals and the reals.

2. Homogeneous Polynomials on Quasi-Banach Lattices

In this section, we brie�y sketch the needed information concerning quasi-Banach

lattices and homogeneous polynomials. In the sequel we �x a natural s ∈ N, and
unless indicated otherwise, denote by X and Y quasi-Banach spaces and by E and F

quasi-Banach lattices.

Definition 2.1. A quasi-normed space is a pair (X, ∥·∥) where X is a real vector

space and ∥ · ∥ is a quasi-norm, a function from X to R such that the following

conditions hold:

(1) ∥x∥ > 0 for all x ∈ X and ∥x∥ = 0 if and only if x = 0.

(2) ∥λx∥ = |λ|∥x∥ for all x ∈ X and λ ∈ R.
(3) There exists a constant C > 1 such that ∥x + y∥ 6 C(∥x∥ + ∥y∥) for all

x, y ∈ X.

The best constant C in 2.1 (3) is called the quasi-triangle constant, or quasi-norm

multiplier, or modulus of concavity of the quasi norm. Two quasi-norms ∥ · ∥ and

∥ · ∥′ are equivalent if there is a constant A > 1 such that A−1∥x∥ 6 ∥x∥′ 6 A∥x∥
for all x ∈ X.

By the Aoki�Rolewicz theorem (see [23]), each quasi-norm is equivalent to some

quasi-norm with the property that ∥x + y∥p 6 ∥x∥p + ∥y∥p (x, y ∈ X) for some
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0 < p 6 1. Such quasi-norm is called a p-norm. Thus, we may assume unless

otherwise mention that a quasi-Banach space is equipped with a p-norm for some

0 < p 6 1.

A topological vector space X is said to be locally bounded if it has a bounded

neighborhood of zero. A quasi-normed space is a locally bounded topological vector

spaces if we take the sets {x ∈ X : ∥x∥ 6 ε} (0 < ε ∈ R) for a base of neighborhoods
of zero. Moreover, this topology may be induced by metric d(x, y) := |||x − y|||p

(x, y ∈ X) where |||·||| is an equivalent p-norm. Conversely, Hyers [17] proved that

the topology of a locally bounded topological vector space X can be deduced from

a quasi-norm, which may be obtained as the Minkowski functional of a bounded

balanced neighborhood B of zero:

∥x∥ := ∥x∥B := inf{0 < λ ∈ R : x ∈ λB} (x ∈ X).

Definition 2.2. A quasi-Banach space is a quasi-normed space which is complete

in its metric uniformity. A quasi-Banach space (X, ∥ · ∥) is called a quasi-Banach

lattice if, in addition, it is a vector lattice and |x| 6 |y| implies ∥x∥ 6 ∥y∥ for all

x, y ∈ X.

Definition 2.3. Fix any s ∈ N. A mapping P : X → Y is called a homogeneous

polynomial of degree s (or s-homogeneous polynomial) if there exists an s-linear

operator φ : Xs → Y such that P = φ ◦ ∆s, where ∆s : X → Xs is the diagonal

mapping ∆s : x 7→ (x, . . . , x) ∈ Xs. There exists a unique symmetric s-linear

operator φ with P = φ ◦∆s which is denoted by P̌ , so that P (x) = P̌ (x, . . . , x) for

all x ∈ X.

An s-homogeneous polynomial P between quasi-normed spaces X and Y is con-

tinuous if and only if it is bounded, and we put, as usual,

∥P∥ = sup{∥P (x)∥ : ∥x∥ = 1} = inf{C > 0 : ∥P (x)∥ 6 C∥x∥s, (x ∈ X)}, (1)

so that ∥P (x)∥ 6 ∥P∥∥x∥s (x ∈ X). We denote by P(sX, Y ) the Banach space

of all continuous s-homogeneous polynomials from X into Y endowed with the

quasi-norm (1). In case s = 1 we put L (X, Y ) := P(1X,Y ).

The basic results of the Banach space theory such as open mapping theorem

and the closed graph theorem (for linear operators) are valid also in the context of

quasi-Banach spaces, see [26]. Consider now vector lattices E and F .

Definition 2.4. Say that an s-linear operator φ : Es → F is positive and write

φ > 0 if φ(x1, . . . , xn) > 0 for all 0 6 x1, . . . , xn ∈ E. An s-linear operator φ : Es →
F is said to be order bounded if φ(As) is order bounded in F for each order bounded

set A in E; orthosymmetric, if φ(x1, . . . , xn) = 0 whenever |xk| ∧ |xl| for some pair
of indices 1 6 k, l 6 s; lattice multimorphism or s-morphism if |φ(x1, . . . , xn)| =
φ(|x1|, . . . , |xn|) for all x1, . . . , xn ∈ E, see Bu, Buskes, and Kusraev [8].

An order bounded orthosymmetric multilinear operator is symmetric [5, 6, 9, 34]

and a lattice multimorphism is orthosymmetric if and only if it is symmetric [8, 9].

As usual, φ 6 ψ means that ψ − φ > 0.

Definition 2.5. Say that an s-homogeneous polynomial P is positive and write

P > 0 if the corresponding s-linear operator P̌ is positive; P is regular if it is
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representable as a di�erence of two positive s-homogeneous polynomials. Denote

by Pr(sE,F ) the spaces of all regular s-homogeneous polynomials from E to F .

The partial order on Pr(sE,F ) is introduced as usual by the cone of positive

polynomials: P 6 Q if and only if 0 6 Q − P . Obviously, Pr(sE,F ) is an ordered

vector space. If F is Dedekind complete vector lattice then so is Pr(sE,F ).

If E and F are quasi-normed lattices then Pr(sE,F ) is an ordered quasi-normed

space under the regular norm

∥P∥r := inf{∥Q∥ : ±P 6 Q ∈ Pr(sE,F )}.

Moreover, Pr(sE,F ) is a quasi-normed lattice whenever F is Dedekind complete,

and in this case ∥P∥r = ∥ |P | ∥, since for a positive Q ∈ Pr(sE,F ) we have

∥Q∥r = ∥Q∥ = sup{∥Q(x)∥ : 0 6 x ∈ E, ∥x∥ 6 1}. (2)

Proposition 2.6. Let E be a quasi-Banach lattice and F a quasi-normed space

and P : E → F an orthogonally additive s-homogeneous polynomial. If P sends

order intervals in E to norm bounded sets in F then P is continuous. In particular,

every positive (and hence every regular) homogeneous polynomial from a quasi-

Banach lattice to a quasi-normed lattice is continuous.

▹ Let P : E → F be an s-homogeneous polynomial from a quasi-Banach latti-

ce E to a quasi-normed lattice norm bounded on order intervals. Assume by way

of contradiction that P is not bounded. Then there exists a sequence (xk) of E

satisfying ∥xk∥ = 1 and ∥P (xk)∥ > (C + 1)ksk for all k ∈ N with C a quasi-triangle

constatnt of E. The completeness of E and the relation
∑∞

k=1C
k∥xk∥/(C+1)k <∞

implies that the sum of the series x =
∑∞

k=1 |xk|/(C+1)k exists in E. By hypotheses

the set P ([−x, x]) is norm bounded in Y . Clearly, −x 6 xk/(C + 1)k 6 x and thus

k 6 ∥P (xk/(C + 1)k)∥ 6 sup{∥P (u)∥ : −x 6 u 6 x} <∞

for all k ∈ N, a contradiction. ◃
Definition 2.7. A homogeneous polynomial P from E to F is said to be

orthogonally additive, whenever |x| ∧ |y| = 0 implies P (x + y) = P (x) + P (y)

for all x, y ∈ E and orthoregular if P can be written as a di�erence of two positive

orthogonally additive homogeneous polynomials.

Let Pr
o (

sE,F ) denotes the space of all orthoregular s-homogeneous (continuous

if E and F are quasi-normed lattices) polynomials from E to F . The regular norm

∥ · ∥r on Pr
o (

sE,F ) is de�ned as ∥P∥r := inf{∥Q∥ : ±P 6 Q ∈ Pr
o (

sE,F )}.
Theorem 2.8. Let E and F be vector lattices. An order bounded s-homogeneous

polynomial P is orthogonally additive if and only if its corresponding symmetric

s-linear operator P̌ is orthosymmetric.

▹ The su�ciency is immediate. The necessity was proved by a number of authors

in di�erent situations, see [7, 18, 41, 54]. The most general form was obtained in

[34, Lemma 4]. ◃
It is easy to see that P is order bounded if and only if so is P̌ . Let P∼

o (
sE;F )

denotes the space of all order bounded orthogonally additive s-homogeneous
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(continuous in the case that E and F are quasi-Banach lattices) polynomials from E

to F . Order relation in P∼
o (

sE,F ) is de�ned as in De�nition 2.5. If F is Dedekind

complete then P∼
o (

sE,F ) = Pr
o (

sE,F ) and this space is a Dedekind complete

vector lattice.

Definition 2.9. Let 2 6 s ∈ N and E be a vector lattice. The pair (Es⊙,⊙s) is

called an s-power of E if the following condition are ful�lled:

(1) Es⊙ is a vector lattice;

(2) ⊙s : E
s → Es⊙ is a symmetric lattice s-morphism;

(3) for every vector lattice F and every symmetric lattice s-morphism φ : Es → F

there is a unique lattice homomorphism S : Es⊙ → F such thatφ = S ◦ ⊙s.

This de�nition is introduced in Boulabier and Buskes [6, De�nition 3.1] (for

the case s = 2 see Buskes and van Rooij [11]). In [6, Theorem 3.2] the existence

of a unique (up to a lattice isomorphism) s-power for every vector lattice was

established. In what follows we put E1⊙ = E and ⊙1 = IE for convenience.

The polynomial ȷs := ⊙s◦∆s : E → Es⊙ generated by ⊙s is positive, orthogonally

additive, and disjointness preserving, see [38]. The notation xs⊙ := ȷs(x) is also used

so that ȷs : x 7→ xs⊙. This polynomial called the canonical polynomial of E plays

the role of the exponentiation missing in general vector lattices. In particular, every

bounded orthogonally additive homogeneous polynomial on a vector lattice is a

composition of the canonical polynomial and a bounded linear operator. The history

of this representation result is re�ected in [3, 6, 18, 48, 53, 54]. A general form has

been found in [34] and [2]: Kusraeva [34] handled the situation when �boundedness�

is understood by means of the bornology of order bounded sets of the domain vector

lattice, while the range space is equipped with a separated convex bornology; Ben

Amor [2, Theorem 26] improved this result showing that the convexity assumption

may be omitted. This form of polynomial representation theorem stated next is

applicable in setting of quasi-Banach spaces.

A mapping between bornological spaces is labeled as bounded if it sends bounded

sets into bounded sets. A vector lattice is considered with the bornology of

order bounded sets. Denote by Pb
o(

sE, Y ) the space of bounded s-homogeneous

orthogonally additive polynomials from E to Y and put L b(E, Y ) = Pb
o(

1E, Y ).

Theorem 2.10. Let E be a uniformly complete vector lattice and Y be

a separated bornological space. Then for any orthogonally additive bounded s-ho-

mogeneous polynomial P : E → Y there exists a unique bounded linear operator

S : Es⊙ → Y such that the representation holds

P (x) = T (xs⊙) (x ∈ E). (3)

Moreover, the spaces Pb
o(

sE, Y ) and L b(Es⊙, Y ) are linearly isomorphic under the

mapping T 7→ ◦ȷs.
▹ See Kusraeva [34, Corollary 3] and Ben Amor [2, Theorem 26]. ◃
Let Po(

sE, Y ) stands for the part of P(sE, Y ) consisting of orthogonally additive

polynomials.

Corollary 2.11. Let E be a quasi-Banach lattice and Y a quasi-normed space

and P : E → Y a norm bounded orthogonally additive s-homogeneous polynomial.
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Then there exists a unique norm bounded linear operator T : Es⊙ → Y such that the

representation (3) holds. Moreover, the correspondence T 7→ T ◦ ȷs is an isometric

isomorphism of quasi-normed spaces L (Es⊙, Y ) and Po(
sE, Y ).

▹ Follows from Theorem 2.10 as Po(
sE, Y ) = Pb

o(
sE, Y ) by Proposition 2.6. ◃

Corollary 2.12. Let E be a quasi-Banach lattice, F a quasi-normed lattice, and

P : E → F a regular orthogonally additive s-homogeneous polynomial. Then there

exists a unique regular linear operator T : Es⊙ → F such that the representation (3)

holds. Moreover, the correspondence T 7→ T ◦ ȷs is an isomertric isomorphism of

ordered quasi-normed spaces L r(Es⊙, F ) and Pr
o (

sE,F ). If F is Dedekind complete

then L r(Es⊙, F ) and Pr
o (

sE,F ) are Dedekind complete quasi-normed lattices.

▹ This is immediate from Theorem 2.10 and formula (2). ◃
Remark 2.13. Corollaries 2.11 and 2.12 in case of Banach lattices E and F

and a Banach space Y are proved in Bu and Buskes [7], see Theorems 4.3 and 5.4;

however these theorems are covered by an earlier general result due to Kusraeva [34,

Theorem 4].

3. Concavification of Quasi-Banach Lattices

In this section we gather some auxiliary facts about the concavi�cation of quasi-

Banach lattices. The main tool is homogeneous functional calculus.

Proposition 3.1. Every quasi-Banach lattice is uniformly complete.

▹ See Szulga [55, Proposition 2.2]. ◃
Thus every quasi-Banach lattices admits a homogeneous functional calculus, see

[28, 40, 42, 55]. Let Hn := H (Rn) be the vector lattice of positively homogeneous

continuous functions φ : Rn → R equipped with a lattice norm ∥φ∥ = sup{|φ(t)| :
t ∈ Rn, ∥t∥∞ = 1}. If E is a uniformly complete vector lattice, n ∈ N, and x =

(x1, . . . , xn) ∈ En then there exists a unique lattice homomorphism x̂ : Hn → E

such that x̂(dtk) = xk with dtk : t 7→ tk, t = (t1, . . . , tn) (k = 1, . . . , n). Moreover,

|x̂(φ)| 6 ∥φ∥∞|x1| ∨ . . .∨ |xn| and ∥x̂(φ)∥ 6 ∥φ∥∞∥ |x1| ∨ . . .∨ |xn| ∥ whenever E is

a quasi-Banach lattice. The element x̂(φ) ∈ E is usually denoted by φ(x1, . . . , xn).

Proposition 3.2. Let φ ∈ H (Rn) and ⟨(u1, . . . , un)⟩ stands for |u1| ∨ · · · ∨ |uN |.
Then for every ε > 0 there exists a number Rε > 0 such that

|φ̂(y)− φ̂(x)| 6 ε⟨x⟩+Rε⟨y − x⟩

for all x = (x1, . . . , xn) ∈ En and y = (y1, . . . , yn) ∈ En. In particular, the mapping

x 7→ φ(x) (x ∈ En) is continuous relative to the topology on E generated by the

quasi-norm.

▹ See Buskes and van Rooj [11, Theorem 7]. ◃
Proposition 3.3. Let E be a uniformly complete vector lattice and x1, . . . , xn ∈

E. If a function φ ∈ H (Rn) is convex, then the representation holds

φ(x1, . . . , xn) = sup

{ n∑
k=1

αkxk : (α1, . . . , αn) ∈ ∂φ

}
, (4)
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where

∂φ :=

{
(α1, . . . , αn) ∈ Rn :

n∑
k=1

αktk 6 φ(t1, . . . , tn), (t1, . . . , tn) ∈ Rn

}
.

Moreover, φ(x1, . . . , xN) is a uniform limit of an increasing sequence which is

comprised of the �nite suprema of sums
∑n

k=1 αkxk with (α1, . . . α) ∈ ∂φ.

▹ See Kusraev [30, Theorem 5.5]. ◃
Proposition 3.4. If φ ∈ H (Rn), x1, . . . , xn ∈ E and h : E → F is a lattice

homomorphism then h(φ(x1, . . . , xn)) = φ(h(x1), . . . , h(xn)).

▹ See Kusraev [30, Proposition 3.6]. ◃
Definition 3.5. Take a positive real number p. Using the homogeneous

functional calculus, we can introduce new vector operations on E by putting

x ⊕ y = (xp + yp)1/p and λ ~ x = λ1/px, where x, y ∈ E and λ ∈ R. Endowed
with these new operations, the original order and lattice structures, E becomes a

vector lattice. De�ne a function ∥ · ∥(p) : E → R by ∥x∥(p) := ∥x∥p (x ∈ E) and note

that ∥x⊕y∥(p) 6 2|1−p|Cp(∥x∥(p)+∥y∥(p)). This new vector lattice together with the

function ∥ · ∥(p) is called the p-concavi�cation of E and is denoted by E(p). If s ∈ N
then E(s) = Es⊙, see Boulabier and Buskes [6].

Proposition 3.6. For every �xed 0 < p < ∞, (E(p), ∥ · ∥(p)) is a quasi-Banach

lattice if and only if (E, ∥ · ∥) is a quasi-Banach lattice. In particular, E and E(p) are

relatively uniformly complete whenever E is a quasi-Banach lattice.

▹ See [13, Proposition 1.2]. ◃
Denote by ιp the identity mapping of (E,6) considered as an operator from E

onto E(p). Clearly, ιp is order isomorphism of E onto E(p), since the vector lattices E

and E(p) have the same underlying ordered set (E,6).

Proposition 3.7. The nonlinear order isomorphism ιp from E onto E(p) is

modulus preserving
(
|ιp(x)| = ιp(|x|)

)
and odd

(
ιp(−x) = −ιp(x)

)
. Moreover, for all

x, y ∈ E and λ ∈ R we have

ιp
(
(xp + yp)

1
p
)
= ιp(x)⊕ ιp(y),

ιp(λ
1
px) = λ~ ιp(x).

In particular, ιp is disjointness preserving and orthogonally additive. If p ∈ N then

we also have xp⊙ = ιp(x
+) + (−1)pιp(x

−) for all x ∈ E.

Proposition 3.8. Given φ ∈ H (Rn) and 0 < s ∈ R, de�ne φs ∈ H (Rn)

by putting φs(t1, . . . , tn) := φ(ts1, . . . , t
s
n)

1
s for all (t1, . . . , tn) ∈ Rn. Then for every

uniformly complete vector lattice E and any �nite collection x1, . . . , xn ∈ E the

representation holds:

φ(ιs(x1), . . . , ιs(xn)) = ιs(φs(x1, . . . , xn)).

▹ Denote y = ι−1
s (φ(ιs(x1), . . . , ιs(xn))) and prove that y = φs(x1, . . . , xn).

Denote by L the uniformly closed vector sublattice of E generated by {x1, . . . , xn, y}
and Hom(L) the set of all R-valued lattice homomorphisms on L. Then e :=
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|x1|+. . .+|xN |+|y| is a strong order unit in L and Hom(L) separates the points of L.

Observe that L(s) = ιs(L), since L is uniformly complete, and the set of R(s)-valued

lattice homomorphisms Hom(L(s)) separates the points of L(s) by Proposition 3.4.

By Buskes, de Pagter, and van Rooij [10, Corollary 3.4] y = φs(x1, . . . , xn) if and

only if ω(y) = φs(ω(x1), . . . , ω(xn)) for all ω ∈ Hom(L) and u = φ(u1, . . . , un) with

uk = ιs(xk) if and only if ω(u) = φ(ω(u1), . . . , ω(un)) for all ω ∈ Hom(L(s)). Making

use of Proposition 3.4 we deduce

ω(y) = ωs(φ(ιs(x1), . . . , ιs(xn)))
1/s = φ(ωs(ιs(x1)), . . . , ωs(ιs(xn)))

1/s

= φ(ω(x1)
s, . . . , ω(xn)

s)1/s = ω(φs(x1, . . . , xn)),

which completes the proof. ◃
Corollary 3.9. Let E be a uniformly complete vector lattice, s ∈ N, 1 6 r ∈ R,

and 0 6 α1, . . . , αn ∈ R with
∑n

k=1 αk = 1. Then for any �nite collection

x1, . . . , xs ∈ E the representations hold:(
n∑

k=1

|xs⊙k |r
) 1

r

=

[(
n∑

k=1

|xk|rs
) 1

rs
]s⊙

,

n∏
k=1

|xs⊙k |αk =

(
n∏

k=1

|xk|αk

)s⊙

.

Proposition 3.10. Let E and F be uniformly complete vector lattices and h :

E → F a lattice homomorphism. Then hp := ιp ◦ h ◦ ι−1
p is a lattice homomorphism

from E(p) to F(p). Moreover, ∥hp∥ = ∥h∥p if E and F are quasi-Banach lattices.

▹ Using Propositions 3.4 and 3.7, for u = ιp(x) and v = ιp(y) with x, y ∈ E, we

have:

hp(u⊕ v) = ιph
(
(xp + yp)1/p

)
= ιp

(
(h(x)p + h(y)p)1/p

)
= hp(u)⊕ hp(v);

hp(λ~ u) = hp(ιp(λ
1/px) = ιph(λ

1/px) = ιp(λ
1/ph(x)) = λ~ hp(u).

Thus, hp is linear and hp also preserves lattice operations according to the de�nition

of order relation on E(p). The equation ∥hp∥ = ∥h∥p is straightforward. ◃
Definition 3.11. A quasi-Banach lattice E is said to be (p, q)-convex with

0 < p 6 q 6 ∞ and p < ∞, respectively (p, q)-concave if there exists a constant C

such that ∥∥∥∥∥
(

n∑
k=1

|xk|q
)1/q∥∥∥∥∥ 6 C

(
m∑
k=1

∥xk∥p
)1/p

,

respectively, (
m∑
k=1

∥xk∥q
)1/q

6 C

∥∥∥∥∥
(

n∑
k=1

|xk|p
)1/p∥∥∥∥∥

for every �nite collection {x1, . . . , xm} in E, see [13]. The smallest possible

constant C is called the (p, q)-convexity constant (respectively (p, q)-concavity

constant) and is denote by M (p,q)(C) (respectively, by M(p,q)(C)). For p = ∞ put(
n∑

k=1

|xk|p
)1/p

=
m∨
k=1

|xk|.
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In the case when p = q we speak of p-convexity (respectively, p-concavity) and write

M (p) :=M (p,p) (respectively, M(p) :=M(p,p)).

Corollary 3.12. The concavi�cation E(s) of a quasi-Banach lattice E is (p, q)-

convex (resp. (p, q)-concave) if and only if E is (ps, qs)-convex (resp. (ps, qs)-

concave). Moreover, M (p,q)(E(s)) =M (ps,qs)(E) and M(p,q)(E(s)) =M(ps,qs)(E).

▹ If E is (ps, qs)-convex then, for arbitrary x1, . . . , xn ∈ E, we estimate by using

Proposition 3.9∥∥∥∥∥
(

n∑
k=1

|xs⊙k |q
)1/q∥∥∥∥∥

(s)

=

∥∥∥∥∥
(

n∑
k=1

|xk|qs
)1/(qs)∥∥∥∥∥

s

6M (ps,qs)(E)

(
n∑

k=1

∥xk∥ps
)1/p

=M (ps,ps)(E)

(
n∑

k=1

∥xs⊙k ∥p(s)

)1/p

,

so that E(s) is (p, q)-convex and M (p,q)(E(s)) 6 M (ps,qs)(E). Conversely, if E(s) is

(p, q)-convex then again making use of Proposition 3.9 we get∥∥∥∥∥
(

n∑
k=1

|xk|qs
)1/(qs)∥∥∥∥∥ =

∥∥∥∥∥
(

n∑
k=1

|xs⊙k |q
)1/q∥∥∥∥∥

1/s

(s)

6M (p,q)(E(s))

(
n∑

k=1

∥xs⊙k ∥p(s)

)1/(ps)

6M (p,q)(E(s))

(
n∑

k=1

∥xk∥ps
)1/(ps)

,

so that E is (ps, qs)-convex and M (ps,qs)(E) 6 M (p,q)(E(s)). The argument for

concavity is similar. ◃
If the convexity constant of a quasi-Banach lattice is �nite, then one can always

�nd an equivalent quasi-norm whose convexity constant is equal to one.

Proposition 3.13. If a quasi-Banach lattice (E, ∥ · ∥) is (p, q)-convex, 0 < q <

p 6 ∞, then M (p,q)(E, |||·|||) = 1 and 1/M (p,r)(E)∥x∥ 6 |||x||| 6 ∥x∥, where

|||x||| := inf

{(
n∑

k=1

∥xk∥p
)1/p

: n ∈ N, x1, . . . , xn ∈ E; |x| =

(
n∑

k=1

|xk|q
)1/q}

.

▹ See Szulga [55, p. 211]. ◃
Proposition 3.14. Let E be a quasi-Banach lattice with the quasi-triangle

constant C. If x1, . . . , xn ∈ E, 0 < α1, . . . , αn ∈ R, and α1 + · · ·+ αn = 1, then

∥xα1
1 · . . . · xαn

n ∥ 6 Cn−1∥x1∥α1 · . . . · ∥xn∥αn .

▹ In the case n = 2 the proof is similar to that of Proposition 1.d.2 (i) of

Lindenstrauss and Tzafriri [40]. The general case is handled by induction, see

Kusraev [29, Proposition 5.2]. ◃
Definition 3.15. A quasi-Banach lattice is said to be 0+-convex (Szulga [55])

or geometrically convex (Kalton and Montgomery-Smit [27]) if there is a constant
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M > 0 such that ∥∥∥∥∥
(

n∏
k=1

|xk|

)1/n∥∥∥∥∥ 6M

(
n∏

k=1

∥xk∥

)1/n

.

for every �nite collection {x1, . . . , xn} in E. The best constant is denoted by M (0+).

Proposition 3.16. A quasi-Banach lattice E is 0+-convex if and only if there

exists C > 0 such that

∥|x1|α1 · . . . · |xn|αn∥ 6 C∥x1∥α1 · . . . · ∥xn∥αn

for all �nite collections x1, . . . , xm ∈ E and α1, . . . , αn ∈ R+ with α1 + · · ·+αn = 1.

▹ In the if part one can take C := (M (0+))2, see Szulga [55, Lemma 4.2]. ◃
Proposition 3.17. A quasi-Banach lattice E is 0+-convex if and only if all its

concavi�cations are 0+-convex, i. e., E(p) is 0
+-convex for every 0 < p <∞.

▹ This is immediate from Corollary 3.9. ◃

4. (p, q)-Convex Homogeneous Polynomials

In this section we de�ne (p, q)-convex homogeneous polynomials and study some

of their properties. Some important technical tools are adopted from Cuartero and

Triana [13], Kalton [21], and Szulga [55].

Definition 4.1. Let X be a quasi-Banach space, F a quasi-Banach lattice, and

0 < p 6 q 6 ∞. A continuous s-homogeneous polynomial P : E → F is said to be

(p, q)-convex if there exists a constant C ∈ R+ such that∥∥∥∥∥
(

m∑
k=1

|P (xk)|q/s
)s/q∥∥∥∥∥ 6 C

(
m∑
k=1

∥xk∥p
)s/p

(5)

for any �nite collection x1, . . . , xm ∈ E. The best constant C in the inequality (5)

is denoted by M (p,q)(P ).

Definition 4.2. Let E be a quasi-Banach lattice, Y a quasi-Banach space, and

0 < p 6 q 6 ∞. A continuous s-homogeneous polynomial P : E → F is said to be

(p, q)-concave if there exists a constant C ∈ R+ such that(
m∑
k=1

∥P (xk)∥q/s
)1/q

6 C

∥∥∥∥∥
(

m∑
k=1

|xk|p
)1/p∥∥∥∥∥ (6)

for any �nite collection x1, . . . , xm ∈ E. The best constant C in the inequality (6)

is denoted by M(p,q)(P ). For p = ∞ we put in both de�nitions(
n∑

k=1

|xk|p
)1/p

=
m∨
k=1

|xk|.

In the case when p = q we speak of p-convexity and p-concavity and write M (p) :=

M (p,p) and M(p) :=M(p,p). Putting s = 1 and P = IE we arrive at De�nition 3.11.
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Proposition 4.3. Assume that an s-homogeneous polynomial P from a quasi-

Banach space X to a quasi-Banach lattice F is (p, q)-convex with 0 < p 6 q 6 ∞.

Then P is also (p1, q1)-convex with M (p1,q1)(P ) 6 M (p,q)(P ) whenever q 6 q1 6 ∞
and 0 < p1 6 p or 0 < q1 < q 6 ∞, 0 < p < p1 and

1

p1
− 1

q1
=

1

p
− 1

q
if q <∞ and

1

p1
− 1

q1
=

1

p
if q = ∞.

▹ The proof uses essentially the same line of an argument as in the proofs of

Cuartero and Triana [13, Proposition 1.3] and Szulga [55, Theorem 4.1] for (p, q)-

convexity of homogeneous functions. The case q 6 q1 6 ∞ and 0 < p1 6 p is

obvious. Consider the other case, i. e. q > q1 and p1 < p. Observe �rst that for any

choice of f1, . . . , fn in F , positive scalars λ1, . . . , λn, r > 0, and 1 6 p̄, q̄ 6 ∞ with

1/p̄+ 1/q̄ = 1 a Holder's inequality holds:(
n∑

k=1

λk|fk|r
)1/r

6
(

n∑
k=1

λq̄k

)1/q̄r( n∑
k=1

|fk|p̄r
)1/p̄r

.

Let 0 < α < 1 and take a �nite collection of nonzero x1, . . . , xn ∈ X. Assume that

q <∞. Putting p̄ := q/q1, q̄ := q/(q−q1), r := q1/s, fk := P (xk) and λk := ∥xk∥(q1/s)−α

(k = 1, . . . , n) and making use of (p, q)-convexity of P we deduce∥∥∥∥∥
(

n∑
k=1

|P (xk)|q1/s
)s/q1

∥∥∥∥∥ =

∥∥∥∥∥
(

n∑
k=1

λk|λ−s/q1
k P (xk)|q1/s

)s/q1
∥∥∥∥∥

6
(

n∑
k=1

λ
q/(q−q1)
k

)s(q−q1)/(qq1)
∥∥∥∥∥
(

n∑
k=1

|P (λ−1/q1
k xk)|q/s

)s/q∥∥∥∥∥
6M (p,q)(P )

(
n∑

k=1

λ
q/(q−q1)
k

)s(q−q1)/(qq1)( n∑
k=1

λ
p/q1
k ∥xk∥p

)s/p

6M (p,q)(P )

(
n∑

k=1

∥xk∥q(q1−α)/(q−q1)

)s(q−q1)/(qq1)( n∑
k=1

∥xk∥αp/q1
)s/p

=: A.

The choice α = q21q/(p(q − q1) + qq1) yields

q(q1 − α)

q − q1
=
αp

q1
= p1,

s(q − q1)

qq1
+
s

p
=

s

q1
− s

q
+
s

p
=

s

p1
,

so that A =M (p,q)(P )
(∑n

k=1 ∥xk∥p1
)s/p1 .

Assume now that q = ∞. Observe �rst that(
n∑

k=1

λk|fk|r
)1/r

6
(

n∑
k=1

λk

)1/r( n∨
k=1

|fk|

)
.
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Taking r := q1/s, λk = ∥xk∥α, fk = P (xk) and using (p,∞)-convexity of P we get∥∥∥∥∥
(

n∑
k=1

|P (xk)|q1/s
)s/q1

∥∥∥∥∥ =

∥∥∥∥∥
(

n∑
k=1

λk|λ−s/q1
k P (xk)|q1/s

)s/q1
∥∥∥∥∥

6
(

n∑
k=1

λk

)s/q1
∥∥∥∥∥

n∨
k=1

|P (λ−1/q1
k xk)|

∥∥∥∥∥
6M (p,∞)(P )

(
n∑

k=1

∥xk∥α
)s/q1( n∑

k=1

∥xk∥p(q1−α)/q1

)s/p

=:A.

Putting α := q1p/(q1 + p) yields α = p1 = p(q1 − α)/q1 and again we get A =(∑n
k=1 ∥xk∥p1

)s/p1 . ◃
Definition 4.4. Let D ⊂ E be a conic segment, that is λD ⊂ D for all 06λ61.

Denote by Hq(D) the collection of all (
∑n

k=1 |xk|q)1/q with xk ∈ D and ∥xk∥ 6 1 for

all k = 1, . . . , n. For n ∈ N and 0 < q ∈ R de�ne 0 < a
(q)
n := a

(q)
n (D) ∈ R by

a(q)n (D) := sup

{∥∥∥∥( n∑
k=1

|xk|q
)1/q∥∥∥∥ : xk ∈ Hq(D), ∥xk∥ 6 1 (k = 1, . . . , n)

}
.

Lemma 4.5. If D is a conic segment in E then a
(q)
mn(D) 6 a

(q)
m (D)a

(q)
n (D) for all

m,n ∈ N.
▹ Take an arbitrary double sequence {xkl : 1 6 k 6 m; 1 6 l 6 n} in D with

∥xkl∥ 6 1 for all k, l. Put xk := (
∑n

l=1 |xkl|q)1/q and note that ∥xk/a(q)n ∥ 6 1 for all

k = 1, . . . ,m. Thus,

1

a
(q)
n

∥∥∥∥( m∑
k=1

n∑
l=1

|xkl|q
)1/q∥∥∥∥ =

∥∥∥∥( m∑
k=1

∣∣∣∣ xk
a
(q)
n

∣∣∣∣q)1/q∥∥∥∥ 6 a(q)m ,

whence a
(q)
mn/a

(q)
n 6 a

(q)
m . ◃

Lemma 4.6. If 0 < p, q ∈ R and 0 < pq < 1, then lim
n→∞

n−1/(pq)a
(q)
n (D) = 0 if

and only if D is (r, q)-convex for some r > pq.

▹ The proof is similar to that of Kalton [23, Proposition 2.2 (ii)]. If D is

(r, q)-convex for some r > pq then evidently n−1/(pq)a
(q)
n 6 M (p,q)(D)n1/r−1/(pq)

and thus limn→∞ n−1/(pq)a
(q)
n (D) = 0. To prove the converse, assume that

limn→∞ n−1/(pq)a
(q)
n (D)=0 and ensure �rst that ιq(D) is (r̄, 1)-convex for some r̄ > p.

Observe that

a(q)n (D)q = sup
{
∥ιq(x1)⊕ · · · ⊕ ιq(xn)∥q : ιq(xk) ∈ H1(ιq(D)),

∥xk∥ 6 1 (k = 1, . . . , n)
}
= a(1)n (ιq(D))

and thus limn→∞ n−1/pa
(1)
n (ιq(D)) = limn→∞

[
n−1/(pq)a

(q)
n (D)

]q
= 0. Just as in [23,

Proposition 2.2 (ii)] we can prove by using Lemma 4.5 that there exist p < r̄ ∈ R
and N ∈ N such that

n−1/r̄a(1)n (ιq(D)) < 1/2 for all n > N. (7)
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Moreover, by Aoki�Rolewicz theorem (applied to E(q)) there exist constants t > 0

and A > 1 such that

∥ιq(x1)⊕ . . .⊕ ιq(xn)∥t(q) 6 A(∥ιq(x1)∥t(q)+ · · ·+∥ιq(xn)∥t(q)) (x1, . . . , xn ∈ E). (8)

Next, by arguing by induction on l and using (7) and (8) as in [23, Propositi-

on 2.2 (ii)], one can show that∥∥α1 ~ |u1| ⊕ . . .⊕ αl ~ |ul|
∥∥
(q)

6 N1/tA
(
1− (1/2)t

)−1/t
(9)

for all u1, . . . , ul ∈ E(q) and α1, . . . , αl ∈ R+ with ∥uk∥(q) 6 1 (1 6 k 6 l) and∑n
k=1 α

r̄
k = 1. Taking arbitrary u1, . . . , ul ∈ E(q) and substituting ∥uk∥(q)/β with

β := (
∑l

k=1 ∥uk∥r̄(q))1/r̄ for αk and ∥uk∥−1
(q) ~ ∥uk∥ for ∥uk∥ in (9) yields the (r̄, 1)-

convexity of E(q). Coming back to E = (E(q))(1/q), putting r := r̄q > pq, and using

Lemma 3.12 we see that E is (r, q)-convex. ◃
Theorem 4.7. Assume that an s-homogeneous polynomial P from a quasi-

Banach space X to a quasi-Banach lattice F is (p0, q0)-convex and (p1, q1)-convex

with q0 < q1. If
1

q
=

θ

q0
+

1− θ

q1
for some 0 < θ < 1,

then P is (p, q)-convex for every p satisfying

1

p
>

θ

p0
+

1− θ

p1
.

▹ The H�older inequality [40, 1.d.2 (ii)] is true in a quasi-Banach lattice, since

it is uniformly complete. Moreover, by Proposition 3.15 we have ∥|x|θ|y|1−θ∥ 6
C∥x∥θ∥y∥1−θ where C is a quasi-norm multiplier. Take x1, . . . , xn ∈ E with ∥xk∥ 6 1

(k = 1, . . . , n). Using this two H�older type inequalities and taking into account

(p0, q0)- and (p1, q1)-convexity of P and the the monotonicity property of the quasi-

norm we deduce:∥∥∥∥∥
(

n∑
k=1

|P (xk)|q/s
)s/q∥∥∥∥∥ 6

∥∥∥∥∥
(

n∑
k=1

|P (xk)|q0/s
)sθ/q0( n∑

k=1

|P (xk)|q1/s
)s(1−θ)/q1

∥∥∥∥∥
6 C

∥∥∥∥∥
(

n∑
k=1

|P (xk)|q0/s
)s/q0

∥∥∥∥∥
θ∥∥∥∥∥
(

n∑
k=1

|P (xk)|q1/s
)s/q1

∥∥∥∥∥
1−θ

6 B

(
n∑

k=1

∥xk∥p0
)sθ/p0( n∑

k=1

∥xk∥p1
)s(1−θ)/p1

6 Bnsθ/p0+s(1−θ)/p1 ,

where B = CM (p0,q0)(P )M (p1,q1)(P ). Putting p̄ := p/q and q̄ := q/s we see that

limn−1/(p̄q̄)a
(q̄)
n = limn−s/pa

(q/s)
n = 0. By Lemma 4.6 D = P (X) is (r, q/s)-convex

for some r > p̄q̄ = p/s with some convexity constant M . Therefore,∥∥∥∥∥
(

n∑
k=1

|P (xk)|q/s
)s/q∥∥∥∥∥ 6M

(
n∑

k=1

∥P (xk)∥r
)1/r

6M∥P∥

(
n∑

k=1

∥xk∥rs
)s/(rs)

.

Thus P is (rs, q)-convex and also (p, q)-convex, since p < rs. ◃
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5. L-Convexity and Type

It can be easily seen that a quasi-Banach lattice is p-convex for some 0 < p ∈ R
if and only if its p-concavi�cation is a Banach lattice. At the same time there exist

quasi-Banach lattices which are not p-convex for any 0 < p ∈ R; the corresponding
examples can be found in Cuartero and Triana [13] and Kalton [23]. In [23] Kalton

also discovered an intrinsic characterization of the class of concavi�cations of Banach

lattices in terms of L-convexity.

Definition 5.1. A quasi-Banach lattice E is said to be L-convex if there exists

C > 0 such that if u, x1, . . . , xn ∈ E with maxk6n |xk| 6 |u| but 1/n
∑n

k=1 |xk| > |u|
then the inequality holds |u| 6 Cmaxk6n |xk|.
Theorem 5.2. Let E be a quasi-Banach lattice. Then the following are

equivalent:

(1) E is L-convex.

(2) E is 0+-convex.

(3) There exists C > 0 such that for any �nite collection x1, . . . , xn ∈ E we have∥∥∥∥( n∏
k=1

|xk|
)1/n∥∥∥∥ 6 Cmax

k6n
∥xk∥.

(4) There exists 0 < p ∈ R such that E is p-convex.

▹ The equivalences (1) ⇐⇒ (4) and (1) ⇐⇒ (3) are due to Kalton, see [23,

Theorem 2.2] and [23, Theorem 4.4], respectively. The equivalence (1) ⇐⇒ (4)

was proved by Szulga [55, Theorem 4.5]. Both authors used technique of random

variables. ◃
Now, we are going to establish a polynomial version of Theorem 5.2. For this

purpose we need some inequalities obtained in Szulga [55].

Definition 5.3. For 0 < α < ∞, let Xα denote a positive α-Pareto random

variable, i. e., with the density f(x) = α/x1+α if x > 1 and f(x) = 0 if x < 1. We

can choose Xα = U−1/α where U is a random variable uniformly distributed on [0, 1],

i. e., the characteristic function of [0, 1] is the density of U .

Lemma 5.4. Let Xj = Xα,j be independent copies of an α-Pareto random

variable Xα, 0 < a < ∞, and (E, ∥ · ∥) be a quasi-Banach lattice. The following

assertions hold:

(1) If x1, . . . , xn ∈ E+ then

exp

(∫
ln

∥∥∥∥∥
n∑

j=1

xjXα,j

∥∥∥∥∥ dµ
)

>
(

n∑
j=1

∥xj∥α
)1/α

. (10)

(2) For every α < r ∈ R and t1, . . . , tn ∈ R+ there exists B = B(α, r) such that

exp

(∫
ln

(
n∑

j=1

trjX
r
α,j

)1/r

dµ

)
6 B

(
n∑

j=1

∥tj∥α
)1/α

. (11)

▹ See Szulga [55, Theorem 3.2]. ◃
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Corollary 5.5. Under the hypotheses of Lemma 5.3 we have

exp

(∫
ln

∥∥∥∥∥
(

n∑
j=1

|xjXα,j|r
)1/r∥∥∥∥∥ dµ

)
>
(

n∑
j=1

∥xj∥α
)1/α

. (12)

▹ This is immediate from 5.3 (1) by concavi�cation in the left-hand side. ◃
Lemma 5.6. If (E, ∥ ·∥) is an L-convex quasi-Banach lattice, then the inequality

holds:∥∥∥∥∥ exp
(∫

ln

(
n∑

j=1

|xjXj|r
)1/r

dµ

)∥∥∥∥∥ 6 C(0+) exp

(∫
ln

(
n∑

j=1

∥xjXj∥r
)1/r

dµ

)
.

▹ See Szulga [55, Proposition 4.4]. ◃
Theorem 5.7. For quasi-Banach lattices E and F the following are equivalent:

(1) F is L-convex.

(2) If an s-homogeneous polynomial P : E → F is (p, q)-convex for some p, q ∈ R
with 0 < p 6 q 6 ∞, then P is r-convex for every 0 < r < p.

▹ (2) =⇒ (1) By Aoki�Rolewicz Theorem F is (p, 1)-convex for some 0 < p 6 1

and putting in 5.6 (2) F = E and P = IF we get that F is r-convex for some

0 < r < p. Thus F is L-convex by Theorem 5.2.

(1) =⇒ (2) Now assume that 5.7 (1) is ful�lled and consider a (p, q)-convex s-ho-

mogeneous polynomial P : E → F with 0 < p 6 q 6 ∞. Take arbitrary 0 < r < p,

n ∈ N, and x1, . . . , xn ∈ E. Consecutive application of Corollary 5.5, Lemma 5.6,

and Lemma 5.4 (2) yields∥∥∥∥∥
(

n∑
j=1

|P (xj)|r/s
)s/r∥∥∥∥∥ 6

∥∥∥∥∥ exp
(∫

ln

(
n∑

j=1

|P (xj)Xr/s,j|q/s
)s/q

dµ

)∥∥∥∥∥
6 C(0+) exp

(∫
ln

∥∥∥∥∥
(

n∑
j=1

|P (xjXr,j)|q/s
)s/q∥∥∥∥∥ dµ

)

6M (p,q)C(0+) exp

(∫
ln

(
n∑

j=1

∥∥xjXr,j

∥∥p)s/p

dµ

)

6 B(p, r)M (p,q)C(0+)

(
n∑

j=1

∥∥xj∥∥r)s/r

,

so that P is r-convex. ◃
Definition 5.8. Let rn be the nth Rademacher function, i. e., rn : [0, 1] → R

is de�ned as rn(t) = sign(sin 2nπt) (t ∈ [0, 1]). An s-homogeneous polynomial

P : X → Y is said to have (Rademacher) type p (0 < p 6 2) if there exists a constant

C > 0 such that, for any choice of n ∈ N and x1, . . . , xn ∈ X, the inequality holds:

1∫
0

∥∥∥∥∥
n∑

k=1

rk(t)P (xk)

∥∥∥∥∥ dt 6 C

(
n∑

k=1

∥xk∥sp
)1/p

.

The least C with the above property is denoted by τp(P ).
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The L1-average in De�nition 5.8 can be replaced by any Lr-average with 0 <

r < ∞ without altering the de�nition. Sometimes, it is convenient to use the same

exponents on both sides:( 1∫
0

∥∥∥∥∥
n∑

k=1

rk(t)P (xk)

∥∥∥∥∥
p

dt

)1/p

6 C

(
n∑

k=1

∥xk∥sp
)1/p

.

This follows immediately from the Kahane inequality, the vector-valued version of

the classical Khintchine inequality.

Theorem 5.9 (Kahane Inequality). If X is a quasi-Banach space and 0 < p <

q < ∞, then there exists a constant K = K(p, q) > 1 such that for all n ∈ N and

x1, . . . , xn ∈ E the inequalities hold:( 1∫
0

∥∥∥∥∥
n∑

k=1

rk(t)xk

∥∥∥∥∥
p

dt

)1/p

6
( 1∫

0

∥∥∥∥∥
n∑

k=1

rk(t)xk

∥∥∥∥∥
q

dt

)1/q

6 K

( 1∫
0

∥∥∥∥∥
n∑

k=1

rk(t)xk

∥∥∥∥∥
p

dt

)1/p

.

▹ This was proved by Kahane for Banach spaces [19]; the generalization for

quasi-Banach spaces is due to Kalton [22]. ◃
Theorem 5.10. Let X and Y be quasi-Banach spaces and 0 < p < 1. An

s-homogeneous polynomial P : X → F is of type p if and only if it is (sp, s)-convex.

▹ The if part is trivial: the inequality
∫ 1

0
∥
∑n

k=1 rk(t)P (xk)∥ dt 6 ∥
∑n

k=1 |P (xk)|∥
implies that P is of type p whenever P is (sp, s)-convex. To prove the converse

assume that P is of type 0 < p < 1 and note that by Aoki�Rolewicz theorem we

may assume that Y is r-normed for some 0 < r < p. Let P : X → Y be an

s-homogeneous polynomial of type p and, for any n ∈ N, de�ne Dn ∈ R+ by

Dn := sup

{∥∥∥∥ n∑
k=1

P (xk)

∥∥∥∥ : x1, . . . , xn ∈ X;
n∑

k=1

∥xk∥sp 6 1

}
. (13)

Then Dn <∞, since for any �nite collection x1, . . . , xn ∈ X we have∥∥∥∥ n∑
k=1

P (xk)

∥∥∥∥ 6 Cn−1∥P∥
n∑

k=1

∥xk∥s 6 Cn−1∥P∥
( n∑

k=1

∥xk∥sp
)1/p

.

It is su�cient to prove that the increasing sequence (Dn)n∈N is bounded. Since P is

of type p, the estimate holds:

1∫
0

∥∥∥∥∥
n∑

k=1

rk(t)P (xk)

∥∥∥∥∥ dt 6 C

(
n∑

k=1

∥xk∥sp
)1/p

. (14)

For any collection x1, . . . , xn ∈ X there exist σk = ±1 (k = 1, . . . , n) such that

∥σ1P (x1) + · · ·+ σnP (xn)∥ 6 C

(
n∑

k=1

∥xk∥sp
)1/p

.
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We can assume that if S := {k : σk = −1} then
∑

k∈S ∥xk∥sp 6 (1/2)
∑n

k=1 ∥xk∥sp
and hence∥∥∥∥∥∑

k∈S

P (xk)

∥∥∥∥∥ 6 Dn

(∑
k∈S

∥xk∥sp
)1/p

6 2−1/pDn

( n∑
k=1

∥xk∥sp
)1/p

. (15)

Now, using the representation
∑n

k=1 P (xk) =
∑n

k=1 σkP (xk) + 2
∑

k∈S P (xk) and

taking into account inequalities (14) and (15) we deduce∥∥∥∥ n∑
k=1

P (xk)

∥∥∥∥r 6 ∥∥∥∥ n∑
k=1

σkP (xk)

∥∥∥∥r + 2r
∥∥∥∥∑

k∈S

P (xk)

∥∥∥∥r

6 (Cr + 2r(1−1/p)Dr
n)

(
n∑

k=1

∥xk∥sp
)r/p

,

so that Dr
n 6 Cr + 2r(1−1/p)Dr

n. It follows that Dn 6 C(1 − 2r(1−1/p))−1/r and the

sequence (Dn)n∈N is bounded. ◃
Remark 5.11. Putting X = Y and P = IX in Theorem 5.10 we arrive at the

following assertion: If a quasi-Banach space X is of type p for some 0 < p < 1

then X is (p, 1)-convex. This fact was obtained by Kalton in [22, Theorem 4.2].

6. Factorization of Disjointness Preserving Polynomials

In this section we give conditions under which a homogeneous disjointness

preserving polynomial P between quasi-Banach lattices admits a factorization

through an Lp(µ)-space, either in the form P = Q ◦ T or in the form P = T ◦ Q,
where Q is a homogeneous disjointness preserving polynomial and T is a lattice

homomorphism.

Definition 6.1. Let E and F be vector lattices. An order bounded homogeneous

polynomial P : E → F is said to be disjointness preserving (resp., lattice

polymorphism) if its corresponding symmetric s-linear operator P̌ from Es to F

is disjointness preserving in each variable (resp., lattice s-morphism).

Much of the structure of order bounded homogeneous disjointness preserving

polynomials is analogous to that of order bounded disjointness preserving linear

operators. In particular, a Meyer type theorem is valid for such polynomials: An

order bounded disjointness preserving s-homogeneous polynomial P : E → F has

the modulus |P |, the positive part P+, and the negative part P− which are s-poly-

morphisms. Moreover, P+(x) = (Px)+, P−(x) = (Px)−, and |P |(x) = |P (x)| for all
x ∈ E+, see [38, Theorem 2.12].

Lemma 6.2. An order bounded s-homogeneous polynomial P : E → F is

disjointness preserving if and only if there exists an order bounded disjointness

preserving linear operator T : E(s) → F such that Px = T (xs⊙) for all x ∈ E. In

particular, any order bounded homogeneous disjointness preserving polynomial is

orthogonally additive.

▹ See Kusraeva [38, Theorem 3.9]. ◃
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Lemma 6.3. An s-homogeneous polynomial P : E → F is a polymorphism if

and only if there exist a vector lattice G and a lattice homomorphism S : E → G

such that G(s) is a sublattice of F and Px = (Sx)s⊙ for all x ∈ E.

▹ See Kusraeva [38, Corollary 3.10]. ◃
Lemma 6.4. Let P : E → F be an s-homogeneous polynomorphism, 0 < q 6

p 6 ∞, and x1, . . . , xn ∈ E. Then( n∑
k=1

|P (xk)|q/s
)s/q

= P

(( n∑
k=1

|xk|q
)1/q)

.

▹ Clearly, P in Lemma 6.2 is a polymorphism if and only if T is a lattice

homomorphism. Thus, the claim follows from Proposition 3.4 and Corollary 3.9. ◃
Proposition 6.5. If P : E → F is a homogeneous polymorphism between quasi-

Banach lattices, then M (p,q)(P ) 6 M (p,q)(E)∥P∥ and M(p,q)(P ) 6 M(p,q)(E)∥P∥.
If E is (p, q)-convex (F is (p, q)-concave), then P is (p, q)-convex ((p, q)-concave).

▹ This is immediate from Lemma 6.4 and De�nitions 3.11, 4.1, and 4.2. ◃
Two factorization results proved by Raynaud and Tradacete in [51, Theorems 1

and 3] enables one to reduce famous Krivin's factorization theorem [28] to factori-

zation of lattice homomorphisms between quasi-Banach lattice, see [51, Lemma 17].

An easy generalization of the latter to disjointness preserving linear operators is

given in the following result. The proof runs along the lines of the paper [51] and is

provided for the convenience of the reader.

Theorem 6.6. Let E be a p-convex quasi-Banach lattice and F a p-concave quasi-

Banach lattice with 0 < p ∈ R. Then each disjointness preserving linear operator

H from E to F factors through some Lp(µ) and the two factors are disjointness

preserving linear operators any of which can be chosen to be a lattice homomorphism.

If H is a lattice homomorphism then both factors may be chosen to be lattice

homomorphisms.

▹ Assume �rst that H : E → F is a lattice homomorphism. By Lemma 3.13

we may assume E(p) is a Banach lattice and by Lemma 3.10 Hp is a lattice

homomorphism from E(p) to F(p). Observe that the function φ : E(p) → R de�ned

by φ(u) = ∥H(u)∥(p)/∥H∥ is superlinear. Indeed, φ is obviously homogeneous, and

taking into account Lemma 3.4 and p-concavity of F , for uk = ιp(xk) with xk ∈ E+

and k = 1, 2 we have

∥Hp(u1 ⊕ u2)∥(p) = ∥Hp(u1)⊕Hp(u2)∥(p) = ∥(H(x1)
p +H(x2)

p)1/p∥p

> ∥H(x1)∥p + ∥H(x2)∥p = ∥Hp(u1)∥(p) + ∥Hp(u2)∥(p)

so that φ(u1 ⊕ u2) > φ(u1) + φ(u2). It follows that the set {φ > ∥H∥}+ consisting

of all u ∈ E(p) with Hp(u) > 0 and ∥φ∥ > 1} is convex and disjoint from the interior

of the unit ball B in E(p). Using the Hahn-Banach theorem, we can �nd a nonzero

continuous linear functional f ∈ E ′
(p) such that sup f(B) 6 inf f({φ > 1}+). This

inequality implies that f is positive and φ(u) 6 f(|u|) 6 ∥u∥ for all u ∈ E(p).

In particular, ker(f) ⊂ ker(Hp).
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De�ne an AL-space L as the completion of the quotient space E(p)/ ker(f)

endowed with a lattice norm induced by a seminorm u 7→ f(|u|) (u ∈ E(p)). By

Kakutani representation theorem L is isometrically lattice isomorphic to L1(µ) :=

L1(Ω,Σ, µ) for some localizable measure space (Ω,Σ, µ). Denote by T̄ the lattice

homomorphism from E(p) to L1(µ) induced by the quotient mapping E(p) →
E(p)/ ker(f) and observe that φ(u) 6 ∥T̄ (u)∥ 6 ∥u∥ for all u ∈ E(p). This inequality

implies ker(T̄ ) ⊂ ker(Hp) and thus there is a linear operator S0 : T̄ (E(p)) → F(p)

such that Hp = S0 ◦ T̄ . Clearly S0 is a norm bounded lattice homomorphism. Since

T̄ (E(p)) is dense in Lp(µ), S0 admits a norm bounded extension S̄ to the whole L1(µ)

which is also a lattice homomorphism satisfying Hp = S̄ ◦ T̄ .
Finally, we apply a q-convexi�cation procedure with q = 1/p to E(p) and F(p) and

observe that (E(p))(q) = E, (F(p))(q) = F , and (Hp)q = H. Moreover, (L1(µ))(q) =

Lp(µ) and H = S ◦ T with S = S̄p and T = T̄q.

Consider now the case of an order bounded disjointness preserving operator H.

By Meyer theorem H = H1 − H2 with H1 and H2 lattice homomorphisms and

H1(E) ⊥ H2(E), see [46, Theorem 3.1.4]. On the basis of the result just proved we

can �nd localizable measure spaces (Ωk,Σk, µk) and lattice homomorphisms Sk ∈
L(Lp(µk), F ) and Tk ∈ L(E,Lp(µk)) (k = 1, 2) such that H1 = S1 ◦ T1 and H2 =

S2◦T2. Denote by (Ω,Σ, µ) the direct sum of (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) and identify

Lp(µ1) and Lp(µ2) with the complementary band in Lp(µ). ThenH = S◦T whenever

S = S1 − S2 and T = T1 + T2 or S = S1 + S2 and T = T1 − T2. Clearly, S1 + S2

and T1 + T2 are lattice homomorphisms and S1 − S2 and T1 − T2 are disjointness

preserving. ◃
Theorem 6.7. Let E and F be quasi-Banach lattices and 0 < p ∈ R. For

an arbitrary order bounded disjointness preserving s-homogeneous polynomial P

from E to F the following hold:

(1) If E is ps-convex and F is p-concave then there exist a localizable measure

space (Ω,Σ, µ), a disjointness preserving s-homogeneous polynomial Q : E → Lp(µ)

and a disjointness preserving linear operator S : Lp(µ) → F such that P = S ◦ Q.
Moreover, any of S and Q may be chosen positive.

(2) If E is p-convex and F is ps-concave then there exist a localizable measure

space (Ω,Σ, µ), an s-polymorphism Q : Lp(µ) → F , and a lattice homomorphism

T : E → Lp(µ), such that P = Q ◦ T .
▹ (1): Consider an order bounded disjointness preserving s-homogeneous

polynomial P from a ps-convex quasi-Banach lattice E to a p-concave quasi-Banach

lattice F . By Lemma 6.2 P = H ◦ ȷs for some order bounded disjointness preserving
linear operator H : E(s) → F and E(s) is a p-convex quasi-Banach lattice according

to Corollary 3.12. In view of Theorem 6.6 there exist a localizable measure space

(Ω,Σ, µ) and order bounded disjointness preserving linear operators T : E(s) →
Lp(µ) and S : Lp(µ) → F such that H = S ◦ T and thus P = S ◦ T ◦ ȷs = T ◦ Q
with S and Q = T ◦ ȷs : E → Lp(µ) disjointness preserving. Any of S and Q may

be chosen positive, since this is true for S and T by Theorem 6.6.

(2): Assume now that E is p-convex and F is ps-concave. By Lemma 6.2 there

exists a vector lattice G such that G(s) is a sublattice of F and P = ȷs ◦H for some
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disjointness preserving linear operator H : E → G. Observe that the closure Ḡ of

G(s) in F is a ps-concave quasi-Banach lattice, while Ḡ(1/s) is a p-concave quasi-

Banach lattice by Corollary 3.12. Moreover, G is embedded into Ḡ(1/s) and we may

assume that H acts from E to Ḡ(1/s). In view of Theorem 6.6 there exist a localizable

measure space (Ω,Σ, µ), a disjointness preserving linear operator T : E → Lp(µ),

and lattice homomorphism S : Lp(µ) → Ḡ(1/s) such that H = S ◦ T and thus

P = ȷs ◦ T = Q ◦ T with Q = ȷs ◦ S : Lp(µ) → F being an s-polymorphism. It

remains to note that the range space of Q is contained in ȷs(Ḡ(1/s)) = Ḡ which in

turn is a sublattice in F . ◃

7. (p, q)-Convex Orthogonally Additive Polynomials

This Section deals with the special case of homogeneous orthogonally additive

polynomials. The properties of this class of polynomials resemble very much those of

linear operators. Linearization results (Theorem 2.10 and Corollaries 2.11 and 2.12)

enables one to transfer theorems about linear operators to results about orthogonally

additive polynomials. We restrict our consideration to a few remarks concerning

convexity, concavity, and factorization of orthogonally additive polynomials.

Proposition 7.1. Let E and F be quasi-Banach lattices, s ∈ N, and p, q ∈ R
with 0 < p 6 q 6 ∞ and p < ∞. Let T : E(s) → F be a positive linear operator.

The polynomial T ◦ ȷs : E → F is (p, q)-convex if and only if T is (p/s, q/s)-convex.

Moreover, M (p,q)(P ) =M (p/s,q/s)(T ).

▹ If T is (p/s, q/s)-convex then using the representation of Corollary 2.12,

De�nition of (E(s), ∥ · ∥(s)), and by Corollary 3.9 we have∥∥∥∥∥
(

m∑
k=1

|P (xk)|q/s
)s/q∥∥∥∥∥ =

∥∥∥∥∥
(

m∑
k=1

|T (xs⊙k )|q/s
)s/q∥∥∥∥∥

6M (p/s,q/s)(T )∥

(
m∑
k=1

∥xs⊙k ∥p/s(s)

)s/p

=M (p/s,q/s)(T )

(
m∑
k=1

∥xk∥p
)s/p

.

Thus P is (p, q)-convex and M (p,q)(P ) 6M (p/s,q/s)(T ).

Now, assume that P is (p, q)-convex and take u1, . . . , un ∈ E(s). If xk := ι−1(uk)

then |uk| = |xs⊙k | = |xk|s⊙ and using the same argument we deduce∥∥∥∥∥
(

m∑
k=1

|T (uk)|q/s
)s/q∥∥∥∥∥ 6

∥∥∥∥∥
(

m∑
k=1

(T |xk|s⊙)q/s
)s/q∥∥∥∥∥

=

∥∥∥∥∥
(

m∑
k=1

P (|xk|)q/s
)s/q∥∥∥∥∥

(s)

6M (p,q)(P )

(
m∑
k=1

∥xk∥p
)s/p

=M (p,q)(P )

(
m∑
k=1

∥uk∥p/s(s)

)s/p

.

It follows that T is (p/s, q/s)-convex and M (p,q)(P ) >M (p/s,q/s)(T ). ◃
Proposition 7.2. Let E be a quasi-Banach lattices and Y a quasi-Banach space,

s ∈ N, and p, q ∈ R with 0 < p 6 q 6 ∞ and p <∞. Let T : E(s) → Y be a positive
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linear operator. The polynomial T ◦ ȷs : E → F is (p, q)-concave if and only if T is

(p/s, q/s)-concave. Moreover, M(p,q)(P ) =M(p/s,q/s)(T ).

▹ The proof is similar to that of Proposition 7.1. ◃
Proposition 7.3. Let E and F be quasi-Banach lattices and T a positive linear

operator from E to F . Then for every 1 6 p 6 ∞ and every �nite collection

x1, . . . , xm ∈ E we have∥∥∥∥∥
(

m∑
k=1

|T (xk)|p
)1/p∥∥∥∥∥ 6 ∥T∥

∥∥∥∥∥
(

m∑
k=1

|xk|p
)1/p∥∥∥∥∥. (16)

▹ The proof in [40, Proposition 1.d.9] works by using the monotonicity of the

quasi-norm in F . ◃
Proposition 7.4. Let E and F be quasi-Banach lattices and P a positive s-ho-

mogeneous orthogonally additive polynomial from E to F . Then for every 1 6 p ∈ R
and every �nite collection x1, . . . , xm ∈ E we have∥∥∥∥∥

(
m∑
k=1

|P (xk)|p
)1/p∥∥∥∥∥ 6 ∥P∥

∥∥∥∥∥
(

m∑
k=1

|xk|ps
)1/(ps)∥∥∥∥∥

s

. (17)

▹ From Proposition 7.3 and Corollary 3.9 we deduce∥∥∥∥∥
(

m∑
k=1

|P (xk)|p
)1/p∥∥∥∥∥ =

∥∥∥∥∥
(

m∑
k=1

|T (xs⊙k )|p
)1/p∥∥∥∥∥

6 ∥T∥

∥∥∥∥∥
(

m∑
k=1

|xs⊙k |p
)1/p∥∥∥∥∥

(s)

= ∥P∥

∥∥∥∥∥
(

m∑
k=1

|xk|ps
)1/(ps)∥∥∥∥∥

s

. ◃

Proposition 7.5. Let E be a quasi-Banach lattice, s ∈ N and 0 < p, q ∈ R.
Then the following assertions are equivalent:

(1) E is (p, q)-convex.

(2) Es⊙ is (p/s, q/s)-convex.

(3) The canonical polynomial x 7→ xs⊙ from E to Es⊙ is (p, q)-convex.

(4) For every quasi-Banach lattice F , each positive orthogonally additive s-ho-

mogeneous polynomial P from E to F is (p, q)-convex.

(5) For every quasi-Banach lattice F , each positive linear operator T from E to F

is (p, q)-convex.

▹ The equivalence (1) ⇐⇒ (2) follows from Corollary 3.12 (see also [55,

Proposition 4.8(iii)], while (2)⇐⇒ (3) is immediate from the De�nitions 3.11 and 4.1

and Corollary 3.9. The implications (4) =⇒ (3) and (5) =⇒ (1) are easily seen by

putting P = ȷs and T = IE and (5) is the particular case of (4) with s = 1. It remains

to ensure (1) =⇒ (4).

Assume that E is (p, q)-convex and take a positive orthogonally additive s-ho-

mogeneous polynomial P from E to a quasi-Banach lattice F . By Corollary 2.12
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the representation P (x) = T (xs⊙) (x ∈ E) holds with a positive linear operator T

from Es⊙ to F . Making use of Proposition 7.4, De�nitions 4.1 and 3.11 we estimate∥∥∥∥∥
(

m∑
k=1

|P (xk)|q/s
)s/q∥∥∥∥∥ 6 ∥P∥

∥∥∥∥∥
((

m∑
k=1

|xk|q
)1/q)s⊙∥∥∥∥∥

(s)

= ∥P∥

∥∥∥∥∥
(

m∑
k=1

|xk|q
)1/q∥∥∥∥∥

s

6 ∥P∥M (p,q)(E)

(
m∑
k=1

∥xk∥p
)s/p

,

ensuring that P is (p, q)-convex. ◃
Theorem 7.6. Let E be a quasi-Banach lattice, X a quasi-Banach spaces, s ∈ N,

and 0 < p 6 ∞. A linear operator T : E → X is p-concave if and only if there exist

a p-concave quasi-Banach lattice F , a bounded linear operator S : F → X, and an

order interval preserving lattice homomorphism R : E → F with dense image such

that T = S ◦R.
▹ The proof given in Raynaud and Tradacete [51, Theorem 1] for the case of

Banach lattices and p > 1 works with minor modi�cations, see [51, Remark 6]. ◃
Theorem 7.7. Let E be a quasi-Banach lattice, Y a quasi-Banach space, s ∈ N,

and 0 < p 6 ∞. An s-homogeneous orthogonally additive polynomial P : E → Y is

p-concave if and only if there exist a p/s-concave quasi-Banach lattice F , a bounded

linear operator S : F → Y , and an order preserving lattice polymorphismQ : E → F

with dense image such that P = S ◦Q.
▹ According to Corollary 2.11 the representation P = T ◦ ȷs holds with a

linear operator T : E(s) → Y which is p/s-concave by Proposition 7.1. In view

of Theorem 7.6 here exist a p/s-concave quasi-Banach lattice F , a bounded linear

operator S : F → X, and an order preserving lattice homomorphism R : E → F

with dense image such that P = S ◦ R ◦ ȷs. Putting Q := R ◦ ȷs and taking into

account Lemma 6.2 we arrive at the required conclusion. ◃
Theorem 7.8. Let F be an L-convex quasi-Banach lattice. Then there exists

a constant A depending only on F such that whenever E is a quasi-Banach lattice

and P : E → F is a bounded orthogonally additive s-homogeneous polynomial then

for any �nite collection x1, . . . , xn ∈ E the inequality holds:∥∥∥∥∥
(

n∑
k=1

|P (xk)|2
)1/2∥∥∥∥∥ 6 A∥P∥

∥∥∥∥∥
(

n∑
k=1

|xk|2s
)1/(2s)∥∥∥∥∥

s

.

▹ Write P as P = T ◦ ȷs with a bounded linear operator from a quasi-Banach

lattice E(s) to an L-space F . By Kalton's result (a generalization of the Krivine's

version of Grothendieck's theorem) [23, Theorem 3.3] for any �nite collection

x1, . . . , xn we have∥∥∥∥∥
(

n∑
k=1

|T (xs⊙k )|2
)1/2∥∥∥∥∥ 6 A∥P∥

∥∥∥∥∥
(

n∑
k=1

|xs⊙k |2
)1/2∥∥∥∥∥.

It remains to apply Proposition 3.9. ◃
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Corollary 7.9. Let E and F be quasi-Banach lattices and P : E → F an

orthogonally additive bounded s-homogeneous polynomial. Then the following hold:

(1) If E is 2s-convex then P is 2s-convex.

(2) If F is 2-concave then P is 2s-concave.

8. Factorization of p-Convex Polynomials

In this section we show that a p-convex homogeneous polynomial can be factored

through a p-convex quasi-Banach lattice. This fact together with Theorem 6.7

enables us to obtain Krivine's type factorization for homogeneous polynomials.

Definition 8.1. A subset U of a vector space is called balanced if λU ⊂ U for all

λ ∈ R with |λ| 6 1. A subset U of a vector lattice is called solid whenever |x| 6 |y|
and y ∈ U imply x ∈ U .

Lemma 8.2. Let U be a solid balanced subset of a vector lattice E containing no

lines. Let ∥ · ∥U be the Minkowski functional of U and E0 := {x ∈ E : ∥x∥U < ∞}.
Then (E0, ∥ · ∥U) is quasi-Banach lattice if and only if there exists C > 0 such that

the following hold:

(1) U + U ⊂ C · U .
(2) For any pair of sequences (λk) in R+ and (xk) in E with

∑∞
k=1 λk < ∞ and

Ckxk ∈ λkU for all k ∈ N there exist x ∈ E and a sequence (νk) in R such that

lim νk = 0 and x−
∑n

k=1 xk ∈ νnU for all n ∈ N.
▹ Evidently, 8.2 (1) is equivalent to 3.1 (3), while 8.2 (2) is a rephrased version

of the criterion of completeness: A quasi-normed space E0 is complete if and only if∑∞
k=1C

k∥xk∥U <∞ implies that the series
∑∞

k=1 xk is converent in E0. ◃
Lemma 8.3. (E0, ∥ · ∥U) is p-convex if and only if, there exists M > 0 such that( n∑

k=1

|αkxk|p
)1/p

∈MU

for all �nite sequences x1, . . . , xn ∈ U and α1, . . . , αn ∈ R+ with
∑n

k=1 α
p
k = 1.

▹ The only if part is obvious with M = M (p)(F ). To ensure the if part pick

arbitrary x1, . . . , xn ∈ F and 0 < ε ∈ R and put σ(ε) := (
∑n

k=1(∥xk∥ + ε)p)1/p,

αk := (∥xk∥+ ε)/σ(ε). Then xk/(∥xk∥+ ε) ∈ U ,
∑n

k=1 α
p
k = 1 and( n∑

k=1

|xk|p
)1/p

= σ(ε)

( n∑
k=1

∣∣∣∣αk
xk

∥xk∥+ ε

∣∣∣∣p)1/p

∈Mσ(ε)U.

It follows that ∥(
∑n

k=1 |xk|p)1/p∥ 6 Mσ(ε) and sending ε to zero yields p-convexity

of F . ◃
Theorem 8.4. Let X be a quasi-Banach space, E a quasi-Banach lattice, s ∈ N,

and 0 < p 6 ∞. A bounded s-homogeneous polynomial P : X → E is p-convex if

and only if there exist a ps-convex Banach lattice G, an injective interval preserving

lattice homomorphism S : G → E and a bounded s-homogeneous polynomial Q :

X → G such that P = S ◦Q.
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▹ Assume that P : X → E is a p-convex s-homogeneous polynomial. Put P̄ :=

ι1/s ◦ P where ι1/s : E → E(1/s) is a nonlinear order isomorphism in Lemma 3.4.

De�ne the set U ⊂ E(1/s) by

U :=

{
u ∈ E(1/s) : (∃n ∈ N) (∃x1, . . . , xn ∈ X)

|u| 6
( n∑

k=1

|P̄ (xk)|p
)1/p

and
n∑

k=1

∥xk∥p = 1

}
.

Let U and ∥ · ∥U stand for the closure of U in E(1/s) and the Minkowski functional

of U , respectively. If |uj| 6 (
∑nj

k=1 |P̄ (xjk)|p)1/p and
∑n

k=1 ∥xjk∥p = 1 for j = 1, 2,

then we estimate

|u1| ⊕ |u2| 6 2

( n∑
k=1

|P̄ (x1k)|p ∨
m∑
k=1

|P̄ (x2k)|p
)1/p

6 21+1/p

( n∑
k=1

|P̄ (x1k/21/p)|p +
m∑
k=1

|P̄ (x2k/21/p)|p
)1/p

;

n∑
k=1

∥x1k/21/p∥p +
m∑
k=1

∥x2k/21/p∥p = 1.

It follows that U⊕1/sU ⊂ 21+1/pU and U⊕1/sU ⊂ U ⊕1/s U ⊂ 21+1/pU , so that 8.2 (1)

is ful�lled with C = 21+1/p. Denote F =
∪∞

k=1 kU and note that F is an order ideal

in E(1/s) and ∥ · ∥U is a monotone quasi-norm. Let C̄ stands for the quasi-triangle

constant of F .

Observe that if u ∈ U then by Corollary 3.9 we have

∥u∥E 6
∥∥∥∥( n∑

k=1

|P̄ (xk)|p
)1/p∥∥∥∥

E(1/s)

=

∥∥∥∥( n∑
k=1

|P (xk)|p/s
)s/p∥∥∥∥1/s

E

6M (p)(P )

( n∑
k=1

∥xk∥p
)1/p

=M (p)(P ),

whence U ⊂M (p)(P )V where V = {∥ · ∥E 6 1}. It follows that U ⊂M (p)(P )V and

hence M (p)(P )∥u∥E 6 ∥u∥U for all u ∈ E0. In particular, U is closed in the topology

of ∥ · ∥U and ∥u∥U = 0 implies u = 0.

In order to ensure that F is complete consider the sequences (λk) in R+ and (xk)

in F with
∑∞

k=1 λk < ∞ and C̄kxk ∈ λkU for all k ∈ N. Then C̄kyk ∈ λkV where

yk = xk/M
(p)(P ) and, since E(1/s) is complete, there exist y ∈ E and a sequence

(νk) in R such that lim νk = 0 and y −
∑n

k=1 yk ∈ νnU for all n ∈ N. Clearly,
x = yM (p)(P ) =

∑∞
k=1 xk in E(1/s). Denote σn :=

∑n
k=1 xk and estimate

∥σn+m − σn∥U 6
n+m∑
k=n+1

C̄k−n∥xk∥U 6
n+m∑
k=n+1

C̄k∥xk∥U 6
n+m∑
k=n+1

λk → 0.

It follows that for an arbitrary ε > 0 we can �nd N ∈ N such that ∥σn+m−σn∥U < ε

and consequently σn+m − σn ∈ εU for all n > N and m ∈ N. Since U is closed in E,



Convexity Conditions for Homogeneous Polynomialson Quasi-Banach Lattices 27

x− σn = limm→∞(σn+m − σn) ∈ εU for all n > N, which implies that x =
∑∞

k=1 xk
in F .

Prove that F is p-convex. Let α1, . . . , αn ∈ R+ and
∑n

k=1 α
p
k = 1. Given

u1, . . . , un ∈ U , there are �nite sequences x1l, . . . , xnl ∈ X such that |uk| 6
(
∑nk

j=1 |P̄ (xkj)|p)1/p and
∑nk

j=1 ∥xkj∥p = 1 for all k = 1, . . . , n. Using Lemma 3.8

and p-convexity of P we deduce:∥∥∥∥( n∑
k=1

|αkuk|p
)1/p∥∥∥∥ 6

∥∥∥∥( n∑
k=1

αp
k

nk∑
j=1

|P̄ (xkj)|p
)1/p∥∥∥∥ 6

∥∥∥∥( n∑
k=1

nk∑
j=1

|P (αkxk)|p/s
)s/p∥∥∥∥

6M (p)(P )

( n∑
k=1

αp
k

nk∑
j=1

∥xk∥p
)1/p

=M (p)(P ).

It follows that (
∑n

k=1 αk|uk|p)1/p ∈ M (p)U . Take now v1, . . . , vn ∈ U and choose the

sequences (ukj)j∈N in U such that vk = limj→∞ ukj for all k = 1, . . . , n. Put v =

(α1v1, . . . , αnvn) and uj = (α1u1j, . . . , αnunj) (j ∈ N). De�ne φ(t) = (
∑n

k=1 |t|p)1/p
for t = (t1, . . . , tn) ∈ Rn. By what we have proved φ(uj) ∈ M (p)U and φ(v) =

limφ(uj) ∈ M (p)U by Lemma 3.6. Thus, according to Lemma 8.3 E0 is p-convex.

G := F(s) is ps-convex and P (X) ⊂ G ⊂ E. If S : G → E is a formal inclusion and

Q := S−1 ◦ P , then P = S ◦ P . ◃
The particular case s = 1 of this last result extends Krivin's theorem [28], see

also [40, Theorem 1.d.11].

Theorem 8.5. Let X and Y be quasi-Banach spaces, E a quasi-Banach lattice,

s ∈ N, and 0 < p 6 ∞. If P : X → E is a p/s-convex s-homogeneous polynomial

and S : E → Y is p-concave linear operator then there exist a localizable measure

space (Ω,Σ, µ), an s-homogeneous polynomial Q : X → Lp(µ) and a bounded linear

operator P̄ : Lp(µ) → Y , such that S ◦ P = T ◦Q.
▹ Put together Theorem 6.7, Theorem 7.7, and Theorem 8.4. ◃

9. p-Convex Lattices of Linear Operators and Polynomials

In this section we study the following natural questions: When is the quasi-

Banach lattice of regular linear operators or regular polynomials between quasi

Banach lattices (p, q)-convex? (p, q)-concave? geometrically convex?

Definition 9.1. A gauge is a sublinear function φ : Rn → R+ ∪ {+∞}. For
s, t ∈ R, s = (s1, . . . , sn), and t = (t1, . . . , tn), denote ⟨s, t⟩ :=

∑n
k=1 sktk. The polar

function φ◦ of a gauge φ is de�ned by (with the conventions inf ∅ = +∞ and

0(+∞) = 0)

φ◦(t) := inf{λ > 0 : (∀ s ∈ Rn) ⟨s, t⟩ 6 λφ(s)} (t ∈ Rn).

Denote by G∨(Rn) the set of all continuous gauges φ : Rn → R+.

Thus, φ◦ : Rn → R+ ∪ {+∞} is also a gauge and the inequality holds

⟨s, t⟩ 6 φ(s)φ◦(t) (s, t ∈ Rn).
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Moreover, the polar function φ◦ can be also calculated by by the formula

φ◦(t) = sup
s∈Rn

⟨s, t⟩
φ(s)

= sup{⟨s, t⟩ : s ∈ Rn, φ(s) 6 1} (t ∈ Rn),

(with the conventions α/0 = +∞ for α > 0 and α/0 = 0 for α 6 0).

We need some auxiliary results concerning homogeneous functions of regular

linear and bilinear operators (see Lemmas 9.2, 9.7 and 9.9 below).

Lemma 9.2. Let E and F be uniformly complete vector lattices with F Dedekind

complete and φ ∈ G∨(RN). Then for x1, . . . , xN ∈ E and T1, . . . , TN ∈ L∼(E,F ) the

inequality holds:

n∑
k=1

Tkxk 6 φ(T1, . . . , TN)(φ
◦(x1, . . . , xN)).

▹ See Kusraev [32, Corollary 4.5]. ◃
Theorem 9.3. Let E and F be quasi-Banach lattices with F Dedekind complete.

Then L r(E,F ) is a (p, q)-concave quasi-Banach lattice for some 1 6 q 6 p < ∞
whenever E is (q′, p′)-convex with p′ = p/(p − 1) and q′ = q/(q − 1). Moreover,

M(p,q)(L
r(E,F )) 6M (q′,p′)(E).

▹ Take a �nite collection of regular operators T1, . . . , Tn ∈ L (E,F ). Denote

B(E) = {x ∈ E : ∥xk∥ 6 1}). Using Proposition 3.3, Lemma 9.2 with φ(t) =

(
∑n

k=1 |tk|p)1/p and φ◦(t) = (
∑n

k=1 |tk|p
′
)1/p

′
, and the (q′, p′)-concavity of E, we have( n∑

k=1

∥Tk∥q
)1/q

= sup

{ n∑
k=1

αk∥Tk∥ : αk ∈ R+ (k 6 n ∈ N),
n∑

k=1

αq′

k = 1

}
= sup

{ n∑
k=1

∥Tk(αkxk)∥ : αk ∈ R+, xk ∈ B(E)+,
n∑

k=1

αq′

k = 1

}
6 sup

xk∈B(E)+

∥∥∥∥ sup{ n∑
k=1

|Tk|(αk|xk|) : αk ∈ R+,

n∑
k=1

αq′

k = 1

}∥∥∥∥
6 sup

xk∈B(E)+

∥∥∥∥ sup
αq′
1 +···+αq′

n =1

( n∑
k=1

|Tk|p
)1/p( n∑

k=1

|αkxk|p
′
)1/p′∥∥∥∥

6 sup
xk∈B(E)+

∥∥∥∥( n∑
k=1

|Tk|p
)1/p∥∥∥∥ · ∥∥∥∥ sup

αq′
1 +···+αq′

n =1

( n∑
k=1

|αkxk|p
′
)1/p′∥∥∥∥

6M (q′,p′)(E)

∥∥∥∥( n∑
k=1

|Tk|p
)1/p∥∥∥∥.

The last inequality follows from the fact that if ∥xk∥ 6 1 and αq′

1 + · · · + αq′
n = 1

then
∥∥(∑n

k=1 |αkxk|p
′)1/p′∥∥ 6M (q′,p′)(E) due to (q′, p′)-convexity of E. ◃

Corollary 9.4. Let E and F be quasi-Banach lattices with F Dedekind complete.

Then Pr
o (

sE,F ) is a (p, q)-concave quasi-Banach lattice for some 1 6 p, q < ∞
whenever E is (sp′, sq′)-convex. Moreover, M(p,q)(P

r
o (

sE,F )) 6M (sq′,sp′)(E).

▹ This is immediate from Theorem 9.3, Corollary 2.12, and Lemma 3.12. ◃
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Definition 9.5. A quasi-Banach lattice E is said to be quasi-AM-space

whenever it is ∞-convex , i. e., there exists a constant C such that

∥∥∥∥∥
n∨

k=1

|xk|

∥∥∥∥∥ 6 C
n∨

k=1

∥xk∥,

for every �nite collection {x1, . . . , xn} in E, see De�nition 4.11. The smallest possible
constant C is called the ∞-convexity constant and is denoted by M (∞)(E).

Proposition 9.6. For a quasi-AM -space (E, ∥ · ∥) there is an equivalent quasi-

norm |||·||| such that |||x ∨ y||| = |||x||| ∨ |||y||| for all x, y ∈ E+.

▹ If ∥ · ∥ is a monotone quasi-norm on E then 1/M (∞)∥x∥ 6 |||x||| 6 ∥x∥ for all

x ∈ E whenever a quasi-norm |||·||| : E → R+ is de�ned as

|||x||| := inf

{
m∨
k=1

∥xk∥ : |x| =
m∨
k=1

|xk|; x1, . . . , xm ∈ E; m ∈ N

}
,

see Proposition 3.13 with p = q = ∞. ◃

Lemma 9.7. Let E and F be vector lattices with E uniformly complete and

F Dedekind complete. Assume that φ ∈ G∨(Rn) is increasing and T1, . . . , Tn ∈
L+(E,F ). Then for every x ∈ E+ the representation holds

φ(T1, . . . , Tn)x = sup

{ n∑
k=1

Tkxk : φ
◦(x1, . . . , xn) 6 x

}
.

▹ See Kusraev [31, Theorem 3.4]. ◃

Definition 9.8. A quasi-Banach lattice (E, ∥·∥ is said to have the Fatou property

(or its norm is Fatou) if 0 6 xα ↑ x implies ∥xα∥ ↑ ∥x∥ for all x ∈ E and (xα) ⊂ E.

Theorem 9.9. Let E be a quasi-Banach lattices and F be a Dedekind complete

quasi-AM -space having the Fatou property. Then L r(E,F ) is a (p, q)-convex quasi-

Banach lattice for some 1 6 p, q < ∞ whenever E is (q′, p′)-concave with p′ =

p/(p− 1) and q′ = q/(q − 1). Moreover, M (p,q)(L r(E,F )) 6M (∞)(F )M(p′,q′)(E).

▹ Take a �nite collection of regular operators T1, . . . , Tn ∈ L (E,F ). Put M :=

M (∞)(F ) and M ′ := M(p′,q′)(E). Using Lemma 9.7, De�nition 9.6, Fatou property



30 A. G. Kusraev, Z. A. Kusraeva

in F , and (q′, p′)-concavity of E, we deduce the estimates∥∥∥∥( n∑
k=1

|Tk|q
)1/q∥∥∥∥ = sup

{∥∥∥∥( n∑
k=1

|Tk|q
)1/q

(x)

∥∥∥∥ : 0 6 x ∈ E, ∥x∥ 6 1

}

= sup
x∈B(E)

∥∥∥∥ sup{ n∑
k=1

Tkxk :

( n∑
k=1

|xk|q
′
)1/q′

6 x

}∥∥∥∥
6M sup

{ n∑
k=1

∥Tk∥∥xk∥ :

∥∥∥∥( n∑
k=1

|xk|q
′
)1/q′∥∥∥∥ 6 1

}

6M sup

{ n∑
k=1

∥Tk∥∥xk∥ :

( n∑
k=1

∥xk∥p
′
)1/p′

6M ′
}

6MM ′
( n∑

k=1

∥Tk∥p
)1/p

from which (p, q)-convexity of L r(E,F ) and the required estimate follows. ◃
Corollary 9.10. Let E and F be as in Theorem 9.8. Then Pr

o (
sE,F ) is a (p, q)-

convex quasi-Banach lattice for some 1 6 p, q < ∞ whenever E is (sq′, sp′)-con-

cave with p′ = p/(p − 1) and q′ = q/(q − 1). Moreover, M (p,q)(Pr
o (

sE,F )) 6
M (∞)(F )M(sp′,sq′)(E).

▹ This is immediate from Theorem 9.9, Corollary 2.12, and Lemma 3.12. ◃
Lemma 9.11. Let E and F be vector lattices with E uniformly complete and

F Dedekind complete. Then for T1, . . . , Tn ∈ L∼
+(E,F ), x1, . . . , xn ∈ E+, and

α1, . . . , αn ∈ R+ with α1 + · · ·+ αn = 1 we have

(Tα1
1 . . . Tαn

n )(xα1
1 . . . xαn

n ) 6 (T1x1)
α1 . . . (Tnxn)

αn .

▹ See Kusraev [31, Proposition 3.3]. ◃
Theorem 9.12. Let E and F be quasi-Banach lattices with F Dedekind

complete. If F is geometrically convex then L r(E,F ) is also geometrically convex.

Moreover, M (0+)(L r(E,F )) 6M (0+)(F ).

▹ Take a �nite collection of positive operators T1, . . . , Tn ∈ L (E,F ) and apply

formula (2), 0+-convexity of F , and Lemma 9.11:∥∥(T1 · . . . · Tn)1/n∥∥ = sup
∥x∥61, x>0

∥∥(T1 · . . . · Tn)1/n((x · . . . · x)1/n)∥∥
6 sup

∥x∥61, x>0

∥∥(T1(x) · . . . · Tn(x))1/n∥∥
6M (0+)(F ) sup

∥x∥61, x>0

(∥T1(x)∥ · . . . · ∥Tn(x)∥)1/n

6M (0+)(F )(∥T1∥ · . . . · ∥Tn∥)1/n. ◃

Corollary 9.13. Let E and F be quasi-Banach lattices with F Dedekind

complete. If F is geometrically convex then Pr
o (

sE,F ) is also geometrically convex.

Moreover, M (0+)(Pr
o (

sE,F )) 6M (0+)(F ).
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