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1. INTRODUCTION

Polynomials on vector lattices possess interesting order properties, and the
classes of polynomials on Banach lattices, defined in mixed terms of norm and
order, have rich structure. This is why the subject draw growing attention of
researchers. Historically, the study of special sets of homogeneous polynomials
between Banach spaces is motivated by infinite-dimensional holomorphy (see
Dineen [15] and Mujica [47]) and the theory of nonlinear ideals stemming from
Pietsch’s paper [49] (for historical roots see also Bernardino, Pellegrino, Seoane-
Sepulveda, and Souza [4]). While the algebraic and linear-topological properties
of polynomials as well as the relations between polynomials and the geometry
of Banach spaces have a long history and are well covered in literature (see, for
example, [15]), the study of the order properties of polynomials on vector and
Banach lattices has began recently: the papers by Sundaresan [53| and Grecu and
Ryan [16] should be considered as two starting points. For recent advances we refer
to [2, 3, 7, 18, 34, 35, 37, 38, 48, 54| (see also recent PhD theses [36, 39, 41]) and
the references therein.

The classes of (p, ¢)-convex and (p, g)-concave linear operators on Banach lattices
introduced by Krivine [28| (the case p = ¢) and Maurey [44] (the general case), as
well as the conceptions of type and cotype introduced by Maurey and Pisier [45] play
an important role in the theory of Banach lattices and bounded linear operators,
see Diestel, Jarchow, and Tong [14], Lindenstrauss and Tzafriri [40], Schwarz [52].

It was shown by Kalton in [21-24| that all these concepts and many related
results may be naturally transplanted to the environment of quasi-Banach spaces,
see also [26]. Kalton offered new approaches and invented a variety of tools, since
convexity arguments do not work well in arbitrary quasi-Banach spaces because of
the weaker triangle inequality.

This work is an attempt to extend the above circle of ideas from linear case to the
polynomial setting and examine convexity conditions for homogeneous polynomials
on quasi-Banach lattices. The paper is organized as follows.

In Section 2 we briefly sketch the needed information concerning quasi-Banach
lattices and homogeneous polynomials. In Section 3 we gather some auxiliary
facts concerning the concavification of quasi-Banach lattices. The main tool is the
homogeneous functional calculus introduced by Krivine [28] and Lozanovskii [42]
which works also in quasi-Banach lattices (see also Cuartero and Triana [12],
Lindenstrauss and Tzafriri [40], Popa [50], Szulga [55]).

In Section 4 we introduce (p,q)-convex homogeneous polynomials and study
relations between convexities. We extend monotonicity of convexity and inter-
polation of distinct convexities to the context of homogeneous polynomials on qua-
si-Banach spaces. Some important technical tools are adopted from Cuartero and
Triana [13|, Kalton [21-23], and Szulga [55].
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Kalton characterized in [23, Theorem 2.2| the class of quasi-Banach lattices
which are p-convex for some 0 < p € R by means of L-convexity. He also proved
in |22, Theorem 4.2] that a quasi-Banach space of Rademacher type p is p-convex.
In Section 5 we prove similar results for homogeneous polynomials.

In Section 6 we give conditions under which a homogeneous disjointness
preserving polynomial P between quasi-Banach lattices admits a factorization
through an L,(u)-space, either in the form P = @ o T, or in the form P =T o Q)
where @) is a disjointness preserving homogeneous polynomial and 7T is a lattice
homomorphism. Section 7 deals with the special case of homogeneous orthogonally
additive polynomials. The properties of this class of polynomials resemble very much
those of linear operators and, in particular, admits good factorization. In Section 8,
following Raynaud and Tradacete [51], we show that a p-convex homogeneous
polynomial can be factored through a p-convex quasi-Banach lattice and this fact
enables us to obtain Krivine’s type factorization for homogeneous polynomials.
Section 9 is devoted to the question: When is the quasi-Banach lattice of regular
linear operators or polynomials between quasi Banach lattices (p, ¢)-convex, or (p, q)-
concave, or geometrically convex?

We use the standard notation and terminology of Aliprantis and Burkinshaw [1]
and Meyer-Niberg |46] for the theory of vector and Banach lattices and of Dineen [15]
for the theory of polynomials. In the present paper we assume that all vector spaces
are defined over the field of reals and all vector lattices are Archimedean.

We let := denote the assignment by definition, while N and R symbolize the
naturals and the reals.

2. HOMOGENEOUS POLYNOMIALS ON QUASI-BANACH LATTICES

In this section, we briefly sketch the needed information concerning quasi-Banach
lattices and homogeneous polynomials. In the sequel we fix a natural s € N, and
unless indicated otherwise, denote by X and Y quasi-Banach spaces and by F and F’
quasi-Banach lattices.

DEFINITION 2.1. A quasi-normed space is a pair (X, ||-||) where X is a real vector
space and || - || is a quasi-norm, a function from X to R such that the following
conditions hold:

(1) |||l = 0 for all z € X and ||z|| = 0 if and only if z = 0.
(2) |[Az]| = |A|[|z|| for all z € X and A € R.

(3) There exists a constant C' > 1 such that ||z + y| < C(||z|| + ||y||) for all
x,y e X.

The best constant C' in 2.1 (3) is called the quasi-triangle constant, or quasi-norm
multiplier, or modulus of concavity of the quasi norm. Two quasi-norms || - || and
| - || are equivalent if there is a constant A > 1 such that A7Y|z| < ||z]|’ < Al|z||
for all z € X.

By the Aoki-Rolewicz theorem (see |23]), each quasi-norm is equivalent to some
quasi-norm with the property that ||z + y[|? < ||z[|? + ||y|? (z,y € X) for some
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0 < p < 1. Such quasi-norm is called a p-norm. Thus, we may assume unless
otherwise mention that a quasi-Banach space is equipped with a p-norm for some
0<p<l.

A topological vector space X is said to be locally bounded if it has a bounded
neighborhood of zero. A quasi-normed space is a locally bounded topological vector
spaces if we take the sets {x € X : ||z|| < e} (0 < € € R) for a base of neighborhoods
of zero. Moreover, this topology may be induced by metric d(z,y) := ||z — y||”
(x,y € X) where ||-]| is an equivalent p-norm. Conversely, Hyers [17] proved that
the topology of a locally bounded topological vector space X can be deduced from
a quasi-norm, which may be obtained as the Minkowski functional of a bounded
balanced neighborhood B of zero:

|z||:=[|z||p:==nf{0 < A€eR: z € AB} (z€X).

DEFINITION 2.2. A quasi-Banach space is a quasi-normed space which is complete
in its metric uniformity. A quasi-Banach space (X, || - ||) is called a quasi-Banach
lattice if, in addition, it is a vector lattice and |z| < |y| implies ||z|| < ||y|| for all
x,y € X.

DEFINITION 2.3. Fix any s € N. A mapping P : X — Y is called a homogeneous
polynomial of degree s (or s-homogeneous polynomial) if there exists an s-linear
operator ¢ : X° — Y such that P = p o A, where A, : X — X* is the diagonal
mapping As : x — (x,...,z) € X°. There exists a unique symmetric s-linear
operator ¢ with P = ¢ o A, which is denoted by P, so that P(z) = P(x,...,z) for
all x € X.

An s-homogeneous polynomial P between quasi-normed spaces X and Y is con-
tinuous if and only if it is bounded, and we put, as usual,

[Pl = sup{[|P(z)[| - [lz]| = 1} = inf{C >0 [|P(x)]| < Cllz|]*, (z € X)}, (1)

so that ||[P(x)]| < ||P]|||l=]|® (z € X). We denote by Z(°*X,Y) the Banach space
of all continuous s-homogeneous polynomials from X into Y endowed with the
quasi-norm (1). In case s = 1 we put Z(X,Y):= 2(1X,Y).

The basic results of the Banach space theory such as open mapping theorem
and the closed graph theorem (for linear operators) are valid also in the context of
quasi-Banach spaces, see [26]. Consider now vector lattices £ and F.

DEFINITION 2.4. Say that an s-linear operator ¢ : £° — F'is positive and write
0 =20if p(zy,...,2,) =2 0forall 0 < xq,...,2, € E. An s-linear operator ¢ : £ —
F is said to be order bounded if p(A*) is order bounded in F' for each order bounded

set A in E; orthosymmetric, if p(z1,...,x,) = 0 whenever |zx| A |z;| for some pair
of indices 1 < k,l < s; lattice multimorphism or s-morphism if |p(z1,...,x,)| =
o(|x|, ..., |xy]) for all zy,...,z, € E, see Bu, Buskes, and Kusraev [8].

An order bounded orthosymmetric multilinear operator is symmetric [5, 6, 9, 34|
and a lattice multimorphism is orthosymmetric if and only if it is symmetric [8, 9.
As usual, ¢ < 1 means that ¥ — ¢ > 0.

DEFINITION 2.5. Say that an s-homogeneous polynomial P is positive and write
P > 0 if the corresponding s-linear operator P is positive; P is regular if it is
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representable as a difference of two positive s-homogeneous polynomials. Denote
by &Z"(°E, F) the spaces of all regular s-homogeneous polynomials from E to F.
The partial order on &"(°*FE, F) is introduced as usual by the cone of positive
polynomials: P < @ if and only if 0 < @ — P. Obviously, " (*E, F') is an ordered
vector space. If F'is Dedekind complete vector lattice then so is 2" (°E, F).

If E and F are quasi-normed lattices then 2" (*E, F') is an ordered quasi-normed
space under the regular norm

1Pl = QI : £P < Q€ 2 ("B,F)}.

Moreover, 2" (°*FE, F) is a quasi-normed lattice whenever F' is Dedekind complete,
and in this case ||P||, = ||| P] ||, since for a positive QQ € Z"(°E, F') we have

QI = [1Ql = sup{[|Q(@)[| : 0 <= € B, [[zf] < 1}. (2)

Proposition 2.6. Let ' be a quasi-Banach lattice and I’ a quasi-normed space
and P : E — F' an orthogonally additive s-homogeneous polynomial. If P sends
order intervals in E/' to norm bounded sets in F' then P is continuous. In particular,
every positive (and hence every regular) homogeneous polynomial from a quasi-
Banach lattice to a quasi-normed lattice is continuous.

< Let P: EE — F be an s-homogeneous polynomial from a quasi-Banach latti-
ce F to a quasi-normed lattice norm bounded on order intervals. Assume by way
of contradiction that P is not bounded. Then there exists a sequence (xy) of E
satisfying ||zx|| = 1 and ||P(z)|| = (C + 1)*k for all k € N with C' a quasi-triangle
constatnt of E. The completeness of E and the relation > -, C¥|lz¢|/(C+1)F < o
implies that the sum of the series © = >~ | |zx|/(C'+1)* exists in E. By hypotheses
the set P([—x,z]) is norm bounded in Y. Clearly, —z < 23/(C + 1)¥ < x and thus

k< |[P(z/(C + D) < sup{||P(u)|| : —z <u < 2} < oo

for all £ € N, a contradiction. >

DEFINITION 2.7. A homogeneous polynomial P from E to F' is said to be
orthogonally additive, whenever |z| A |y| = 0 implies P(x + y) = P(z) + P(y)
for all x,y € E and orthoregular if P can be written as a difference of two positive
orthogonally additive homogeneous polynomials.

Let &7 (°E, F) denotes the space of all orthoregular s-homogeneous (continuous
if £ and F' are quasi-normed lattices) polynomials from E to F. The reqular norm
|- |l on Z(°E, F) is defined as || P||,:=inf{||Q] : £P < Q € Z.(°E,F)}.

Theorem 2.8. Let E and F' be vector lattices. An order bounded s-homogeneous
polynomial P is orthogonally additive if and only if its corresponding symmetric
s-linear operator P is orthosymmetric.

<1 The sufficiency is immediate. The necessity was proved by a number of authors
in different situations, see |7, 18, 41, 54]. The most general form was obtained in
[34, Lemma 4]. >

It is easy to see that P is order bounded if and only if so is P. Let 27 (°F; F)
denotes the space of all order bounded orthogonally additive s-homogeneous
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(continuous in the case that F and F' are quasi-Banach lattices) polynomials from F
to F. Order relation in &) (°F, F) is defined as in Definition 2.5. If F' is Dedekind
complete then & (°E,F) = Z27(°FE, F) and this space is a Dedekind complete
vector lattice.

DEFINITION 2.9. Let 2 < s € N and E be a vector lattice. The pair (E*®, ®;) is
called an s-power of E if the following condition are fulfilled:

(1) E*® is a vector lattice;

(2) @ : E* — E*° is a symmetric lattice s-morphism;

(3) for every vector lattice F' and every symmetric lattice s-morphism ¢ : E* — F'
there is a unique lattice homomorphism S : £*® — F' such thaty = S o ©.

This definition is introduced in Boulabier and Buskes [6, Definition 3.1] (for
the case s = 2 see Buskes and van Rooij [11]). In [6, Theorem 3.2] the existence
of a unique (up to a lattice isomorphism) s-power for every vector lattice was
established. In what follows we put E'® = F and ®; = I for convenience.

The polynomial j,:= ®s0A, : E — E*® generated by ®, is positive, orthogonally
additive, and disjointness preserving, see [38|. The notation z°®:= j,(x) is also used
so that j5 : « — 2°°. This polynomial called the canonical polynomial of E plays
the role of the exponentiation missing in general vector lattices. In particular, every
bounded orthogonally additive homogeneous polynomial on a vector lattice is a
composition of the canonical polynomial and a bounded linear operator. The history
of this representation result is reflected in |3, 6, 18, 48, 53, 54]. A general form has
been found in 34| and |2|: Kusraeva |34| handled the situation when “boundedness”
is understood by means of the bornology of order bounded sets of the domain vector
lattice, while the range space is equipped with a separated convex bornology; Ben
Amor |2, Theorem 26| improved this result showing that the convexity assumption
may be omitted. This form of polynomial representation theorem stated next is
applicable in setting of quasi-Banach spaces.

A mapping between bornological spaces is labeled as bounded if it sends bounded
sets into bounded sets. A vector lattice is considered with the bornology of
order bounded sets. Denote by Z2°(*E,Y) the space of bounded s-homogeneous
orthogonally additive polynomials from F to Y and put Z°(E,Y) = 2°('E.Y).

Theorem 2.10. Let E be a uniformly complete vector lattice and Y be
a separated bornological space. Then for any orthogonally additive bounded s-ho-
mogeneous polynomial P : ' — Y there exists a unique bounded linear operator
S E*® — 'Y such that the representation holds

P(x)=T(x*°) (x € E). (3)
Moreover, the spaces P°(°E,Y) and £°(E*®,Y) are linearly isomorphic under the
mapping T — o).
< See Kusraeva [34, Corollary 3] and Ben Amor |2, Theorem 26]. >

Let Z,(°E,Y) stands for the part of Z(°*E,Y") consisting of orthogonally additive
polynomials.

Corollary 2.11. Let E' be a quasi-Banach lattice and Y a quasi-normed space
and P : E — Y a norm bounded orthogonally additive s-homogeneous polynomial.
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Then there exists a unique norm bounded linear operatorT" : E*® — Y such that the
representation (3) holds. Moreover, the correspondence T +— T o ), is an isometric
isomorphism of quasi-normed spaces £ (E*°)Y) and Z,(°E,Y).

< Follows from Theorem 2.10 as Z,(°E,Y) = £°(*E,Y) by Proposition 2.6. >

Corollary 2.12. Let E be a quasi-Banach lattice, F' a quasi-normed lattice, and
P : F — F a regular orthogonally additive s-homogeneous polynomial. Then there
exists a unique regular linear operator T': E*® — F' such that the representation (3)
holds. Moreover, the correspondence T+ T o j, is an isomertric isomorphism of
ordered quasi-normed spaces " (E*®, F') and &) (°E, F). If F is Dedekind complete
then " (E*°, F) and &} (°E, F') are Dedekind complete quasi-normed lattices.

< This is immediate from Theorem 2.10 and formula (2). >

REMARK 2.13. Corollaries 2.11 and 2.12 in case of Banach lattices £ and F
and a Banach space Y are proved in Bu and Buskes [7], see Theorems 4.3 and 5.4;

however these theorems are covered by an earlier general result due to Kusraeva [34,
Theorem 4.

3. CONCAVIFICATION OF QUASI-BANACH LATTICES

In this section we gather some auxiliary facts about the concavification of quasi-
Banach lattices. The main tool is homogeneous functional calculus.

Proposition 3.1. Every quasi-Banach lattice is uniformly complete.
< See Szulga [55, Proposition 2.2]. >

Thus every quasi-Banach lattices admits a homogeneous functional calculus, see
[28, 40, 42, 55|. Let 7, := 7 (R"™) be the vector lattice of positively homogeneous
continuous functions ¢ : R" — R equipped with a lattice norm ||¢|| = sup{|p()] :
t € R", ||t|lc = 1}. If FE is a uniformly complete vector lattice, n € N, and x =
(x1,...,x,) € E™ then there exists a unique lattice homomorphism X : J¢, — E
such that X(dty) = x with dty : t — t, t = (t1,...,t,) (k= 1,...,n). Moreover,
x () < l[elloslzr| V..V |zn| and [[x()[| < [[@llooll lz2] V... V [zp] || whenever E is
a quasi-Banach lattice. The element X(¢) € E is usually denoted by p(z1,...,2,).

Proposition 3.2. Let ¢ € S (R") and ((uy, ..., u,)) stands for |ui|V -V |uy|.
Then for every € > 0 there exists a number R, > 0 such that

P(y) = ()| < e(x) + R{y — %)

for all x = (xq,...,2,) € E" and y = (y1,...,Yyn) € E". In particular, the mapping
x — p(x) (x € E™) is continuous relative to the topology on E generated by the
quasi-norm.

< See Buskes and van Rooj [11, Theorem 7|. >

Proposition 3.3. Let E be a uniformly complete vector lattice and xy,...,x, €
E. If a function ¢ € 7€ (R"™) is convex, then the representation holds

go(xl,...,xn):sup{Zaka:k: (a1, ... ) E@go}, (4)
k=1
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where
D= {(al,...,an) ER™: Y apty < pltr, o tn), (b tn) € R”}.
k=1

Moreover, p(x1,...,xy) Is a uniform limit of an increasing sequence which is
comprised of the finite suprema of sums » ,_, oy with (aq,...a) € Op.

< See Kusraev [30, Theorem 5.5]. >

Proposition 3.4. If ¢ € S (R"), x1,...,2, € E and h : E — F is a lattice
homomorphism then h(p(z1,...,x,)) = @(h(xy),..., h(x,)).

< See Kusraev |30, Proposition 3.6]. >

DEFINITION 3.5. Take a positive real number p. Using the homogeneous
functional calculus, we can introduce new vector operations on FE by putting
r®y = (2P +yP)? and A\ ® v = APz, where 7,y € F and A € R. Endowed
with these new operations, the original order and lattice structures, £ becomes a
vector lattice. Define a function || - ||,y : £ = R by ||z||¢»):= ||z||” (z € E) and note
that ||z @yl < 2HPICP(||2]| () + ||yl ) This new vector lattice together with the
function || - || is called the p-concavification of E and is denoted by E,. If s € N
then E(,) = E°°, see Boulabier and Buskes [6].

Proposition 3.6. For every fixed 0 < p < 00, (E@), | - |lp) is a quasi-Banach
lattice if and only if (E, || - ||) is a quasi-Banach lattice. In particular, E and E,) are
relatively uniformly complete whenever E is a quasi-Banach lattice.

< See [13, Proposition 1.2]. >
Denote by ¢, the identity mapping of (£, <) considered as an operator from E

onto E(y). Clearly, ¢, is order isomorphism of E onto E|,), since the vector lattices I/
and E(, have the same underlying ordered set (£, <).

Proposition 3.7. The nonlinear order isomorphism t, from E onto Ey, is
modulus preserving (|u,(z)| = 1,(|z])) and odd (1,(—x) = —1,(x)). Moreover, for all
x,y € I/ and A € R we have

1
Lp((xp + yp)p) = 1p(z) B 1p(y),
Lp(Arz) = A @ 1, ().
In particular, v, is disjointness preserving and orthogonally additive. If p € N then
we also have 27® = 1,(z7) + (—1)P,(x~) for all v € E.

Proposition 3.8. Given ¢ € #(R") and 0 < s € R, define ¢, € H(R")
by putting @,(t1, ... t,) = @5, ... t5)% for all (t1,...,t,) € R™. Then for every
uniformly complete vector lattice IY' and any finite collection x1,...,z, € E the
representation holds:

O(ts(1), -y ts(xn)) = ts(@s(z1, ..o, x0)).

< Denote y = 17 (o(ts(x1), ..., ts(x,))) and prove that y = pg(z1,...,7,).
Denote by L the uniformly closed vector sublattice of E generated by {x1,...,z,,y}
and Hom(L) the set of all R-valued lattice homomorphisms on L. Then e :=
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|z1|+. . .4+|zN|+]|y| is a strong order unit in L and Hom(L) separates the points of L.
Observe that L) = (L), since L is uniformly complete, and the set of Ry-valued
lattice homomorphisms Hom(L(,)) separates the points of L by Proposition 3.4.
By Buskes, de Pagter, and van Rooij [10, Corollary 3.4] y = ps(z1,...,z,) if and
only if w(y) = ps(w(xy),...,w(zy,)) for all w € Hom(L) and u = p(uy, ..., u,) with
ug, = ts(xy) if and only if w(u) = @(w(u1),...,w(uy)) for all w € Hom(L ). Making
use of Proposition 3.4 we deduce

w(y) = ws((Ls(1), ..., LS(xn)))l/S = p(ws(ts(z1)), - - - aWS(LS(xn)))l/S
= p(w(z1)?, ... ,w(ajn)s)l/s = w(ps(x1, ..., 2p)),
which completes the proof. >

Corollary 3.9. Let E be a uniformly comp]ete vector lattice, s € N, 1 < r € R,
and 0 < aq,...,a, € R with Zk:l ar = 1. Then for any finite collection

x1,...,Ts € F the representations hold:
1

(B) - [(g)T

n n S0
fiee (1)
k=1 k=1
Proposition 3.10. Let E and F' be uniformly complete vector lattices and h :
E — F a lattice homomorphism. Then hy,:= 1,0 ho L;l is a lattice homomorphism
from E,) to Fi,y. Moreover, ||h,|| = ||h||? if E and F are quasi-Banach lattices.

< Using Propositions 3.4 and 3.7, for u = ¢,(x) and v = 1,(y) with 2,y € E, we
have:

o @ ) = 1,h((a? + 97)7) = (B + h(y)") ) = hylu) @ ()
(A ® 1) = hy(1,(N72) = 1, hONV72) = 1, (AWPh()) = A @ ().
Thus, h,, is linear and h,, also preserves lattice operations according to the definition
of order relation on E(,). The equation ||h,|| = ||h||? is straightforward. >

DEFINITION 3.11. A quasi-Banach lattice E is said to be (p,q)-conver with
0 <p<g<ooand p < oo, respectively (p, q)-concave if there exists a constant C'

such that
/q m 1/p
H (Z !xk!q> C(Z H%Hp> ,
k=1

m 1/q n 1/p
<ZHMII"> <C (leklp>
k=1 k=1

for every finite collection {zy,...,z,} in E, see [13]. The smallest possible
constant C' is called the (p,q)-converity constant (respectively (p,q)-concavity
constant) and is denote by M®9(C) (respectively, by M, (C)). For p = oo put

n 1/p m
(Z]:ck|p> = \/|xk|
k=1 k=1

respectively,
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In the case when p = ¢ we speak of p-convexity (respectively, p-concavity) and write
M®):= M®P) (respectively, M, := M)

Corollary 3.12. The concavification E(s of a quasi-Banach lattice E is (p, q)-
convex (resp. (p,q)-concave) if and only if E is (ps,qs)-convex (resp. (ps,qs)-
concave). Moreover, MP9(E ) = M@ (E) and M, (E(s) = Mps g (E).

< If B is (ps, gs)-convex then, for arbitrary xi,...,z, € E, we estimate by using

Proposition 3.9
n 1/(gs)||s
k=1

n 1/q
(Z) |,
k=1
1/p 1/p
< MO(E (anknw) = MO(E (an ) ,

so that E(y) is (p, q)-convex and MP9(E)) < M%) (E). Conversely, if E is
(p, q)-convex then again making use of Proposition 3.9 we get

n 1/(gs) n 1/q
k=1 k=1 (s)

1/(ps) n 1/(ps)
<Mpq (Z”ff ) <M(p’Q)(E(s))<Z||$k||ps> :

k=1

1/s

so that E is (ps,qs)-convex and M®*%)(E) < M®P9(E)). The argument for
concavity is similar. >

If the convexity constant of a quasi-Banach lattice is finite, then one can always
find an equivalent quasi-norm whose convexity constant is equal to one.

Proposition 3.13. If a quasi-Banach lattice (E, || - ||) is (p, q)-convex, 0 < q <
p < oo, then MPI(E, ||-||) = 1 and 1/M®"(E)|z|| < ||z]| < [[«]|, where

n 1/p n 1/q
||| := inf { (Z ||xk||p> - neN, ay,...,2, € E; |z| = (Z |xk|q> }
k=1

k=1

< See Szulga [55, p. 211]. >

Proposition 3.14. Let E be a quasi-Banach lattice with the quasi-triangle
constant C. If x1,...,x, € E, 0 < ay,...,a, € R, and a; +--- + a,, = 1, then

25 - | < O | ]l

< In the case n = 2 the proof is similar to that of Proposition 1.d.2(i) of
Lindenstrauss and Tzafriri |[40|. The general case is handled by induction, see
Kusraev [29, Proposition 5.2]. >

DEFINITION 3.15. A quasi-Banach lattice is said to be 0T-conver (Szulga [55])
or geometrically conver (Kalton and Montgomery-Smit [27]) if there is a constant
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n 1/n n 1/n
<H|$k;|> <M<H||$k||> :
k=1 k=1

for every finite collection {x1,...,x,} in E. The best constant is denoted by MO,

M > 0 such that

Proposition 3.16. A quasi-Banach lattice E is 0"-convex if and only if there
exists C' > 0 such that

Qn

™ o | ) < Cllza][* - [l

for all finite collections x1,...,x, € ' and aq,...,a, € Ry with ay +---+a,, = 1.
< In the if part one can take C:= (M©"))2 see Szulga [55, Lemma 4.2]. >

Proposition 3.17. A quasi-Banach lattice E is 0" -convex if and only if all its
concavifications are 0" -convex, i.e., E(,) is 0T-convex for every 0 < p < oo.

< This is immediate from Corollary 3.9. >

4. (p,q)-CONVEX HOMOGENEOUS POLYNOMIALS

In this section we define (p, ¢)-convex homogeneous polynomials and study some
of their properties. Some important technical tools are adopted from Cuartero and
Triana [13], Kalton [21], and Szulga [55].

DEFINITION 4.1. Let X be a quasi-Banach space, I' a quasi-Banach lattice, and
0 < p < q < 0. A continuous s-homogeneous polynomial P : F — F is said to be
(p, q)-convex if there exists a constant C' € R, such that

m s/q m s/p
'<Z|P(xk)|‘”8> < O(ankll”) (5)

for any finite collection z1,...,x,, € E. The best constant C' in the inequality (5)
is denoted by M@ (P),

DEFINITION 4.2. Let E be a quasi-Banach lattice, Y a quasi-Banach space, and
0 < p < q < 0. A continuous s-homogeneous polynomial P : E — F'is said to be
(p, q)-concave if there exists a constant C' € R, such that

m 1/q m 1/p
(2np<xk>uq/3) <o (zw)
k=1 k=1

for any finite collection z1,...,x,, € E. The best constant C' in the inequality (6)
is denoted by M, 4 (P). For p = oo we put in both definitions

(iw) VI

k=1 k=1

(6)

In the case when p = ¢ we speak of p-convezity and p-concavity and write M®) .=
M®P) and M, := M,,). Putting s = 1 and P = I we arrive at Definition 3.11.



Convexity Conditions for Homogeneous Polynomialson Quasi-Banach Lattices 13

Proposition 4.3. Assume that an s-homogeneous polynomial P from a quasi-
Banach space X to a quasi-Banach lattice F' is (p,q)-convex with 0 < p < ¢ < 0.
Then P is also (py,q1)-convex with M®1a)(P) < M®9(P) whenever ¢ < q; < 00
and 0 <py <por0<q; <qg<o0,0<p<p; and

1 1 1 1 1 1 1

———=—-—-if ¢g<oo and —— —=- if ¢=o00.
hh @ p g b @ p

<1 The proof uses essentially the same line of an argument as in the proofs of
Cuartero and Triana [13, Proposition 1.3] and Szulga [55, Theorem 4.1| for (p, q)-
convexity of homogeneous functions. The case ¢ < ¢ < co and 0 < p; < p is
obvious. Consider the other case, i.e. ¢ > ¢ and p; < p. Observe first that for any
choice of fi,..., f, in F, positive scalars A\j,..., A\, 7 > 0, and 1 < p, ¢ < oo with
1/p+1/G =1 a Holder’s inequality holds:

n 1/r n 1/qr n 1/pr
(o) () (Lwr) -
k=1 k=1 k=1

Let 0 < a < 1 and take a finite collection of nonzero x1,...,x, € X. Assume that
g < oo. Putting pi= q/q1, 3:= q/(q—q1), 7= q1/5, fr:= P(wy) and A:= ||z |@/9 =
(k=1,...,n) and making use of (p, g)-convexity of P we deduce

n s/q n s/m
H (Z |P<xk)|ql/s> (Z Ak|>\;§s/(hp(96k)|‘“/s>
k=1 k=1
n s(g—q1)/(qq1) n s/q
< (Z}\Z/(q_ql)> (le()\]zl/ql'rk)|q/8>
k=1 k=1
n s(g—q1)/(qq1) n s/p
< M(PH)(P) <Z)\Z/(QQ1)> (Z)\z/muxkup)
k=1 k=1
n s(g—q1)/(qq1) n s/p
< M@®9(P) (Z ||xk”q(q1a)/(qq1)> (Z kaHap/ql) — A
k=1 k=1

The choice a = ¢7q/(p(q — @) + qq1) yields

— Q s(qg — S S s S S
Q(ql )__p:ph (q QI)+_:___+_:_7
q—q1 q1 qd1 p q1 q p P1

so that A= MD(P)(Ty_ [lex|r) ™.

Assume now that ¢ = oo. Observe first that

(Branr) "< (80) (¥m)
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Taking 7:= q1/s, A = ||zx||¥, fx = P(xy) and using (p, 0o)-convexity of P we get

s/ n s/q1
H(ZIP |‘“/S> = ‘(ZMIA;S/“P(M)I“/S>
k=1
n S/q1 n
< (ZM) \V |P<A,;”%k>|H
k=1 k=1

s/q n s/p
ME=I(P (Z kaua> (Z kaup@-w) oA
k=1

Putting « := ¢ip/(q1 + p) yields @« = p; = p(¢1 — @)/q1 and again we get A =
(Zhe )™ o

DEFINITION 4.4. Let D C E be a conic segment, that is A\D C D for all 0 <A< 1.
Denote by H,(D) the collection of all (> y_, |zx|9)Y? with z;, € D and ||zx|| < 1 for
allk=1,...,n. Forne€Nand 0 < q € R define 0 < a!’:= a{” (D) € R by

renf] ()

Lemma 4.5. If D is a conic segment in E then a,(%(D) < a,(;{)(D)a%q)(D) for all
m,n € N,

o€ D).l €1 (6= 1,0 .

< Take an arbitrary double sequence {zy : 1 <k <m; 1 < n} in D with
|zm|l < 1 for all k1. Put zp:= (31, |7x|?)"/? and note that Ha:k/an | <1 for all
k=1,...,m. Thus,

/a " g |9 1/q “
q _ ke q
(S ) I ) <o
k=1 I=1 k=11 0n
whence a'f /a <a? >
Lemma 4.6. If 0 < p,qg € R and 0 < pg < 1, then lim n_l/(pq)ang)(D) =0 if
n—oo

and only if D is (r, q)-convex for some r > pq.

< The proof is similar to that of Kalton [23, Proposition 2.2 (ii)|]. If D is
(r,q)-convex for some r > pq then evidently n=V/®9q@ < M@ (D)pl/=1/@0)
and thus lim,_,..n "/ (p‘I)aq(lq)(D) =0. To prove the converse, assume that
limy,_yeo 0~/ ®9a{? (D) =0 and ensure first that ty(D) is (7, 1)-convex for some 7 > p.
Observe that

a) (D) = sup {||eg(21) @ - @ q(aa) g+ tola) € Hi(1y(D)),
okl <1 (k=1,...,n)} = al (14(D))
and thus lim,_,e 720 (1,(D)) = lim, e [n’l/(”q)af@q)(D)]q = 0. Just as in [23,

Proposition 2.2 (ii)] we can prove by using Lemma 4.5 that there exist p < 7 € R
and N € N such that

nY7a(1,(D)) < 1/2 for all n. > N. (7)

n
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Moreover, by Aoki-Rolewicz theorem (applied to E(,)) there exist constants ¢ > 0
and A > 1 such that

leq(@1) @ @ tq(n)lliy) < Allleg(@)lligy +- -+ lta(@n)lliy) (21, 20 € E). (8)

Next, by arguing by induction on ! and using (7) and (8) as in |23, Propositi-
on 2.2 (ii)|, one can show that

||O£1 @l G... day® |ul|H(q) < Nl/tA(l _ (1/2)1&)*1/1‘, (9)

for all uy,...,u € Eg and oq,...,a; € Ry with [Jug|q) <1 (1 <k < 1) and
Y poya = 1. Taking arbitrary wi,...,u € E(, and substituting ||ug| /8 with
B = (22:1 ||uk||€q))1/F for ay and ||uk||(_q§ ® ||ug|| for [Jug| in (9) yields the (7,1)-
convexity of Eg. Coming back to £ = (E))a/q), putting r:= 7q > pq, and using
Lemma 3.12 we see that E is (7, g¢)-convex. >

Theorem 4.7. Assume that an s-homogeneous polynomial P from a quasi-
Banach space X to a quasi-Banach lattice F' is (po, qo)-convex and (p1, q1)-convex
with qo < q1. If

1 6 1-46
-=—+ for some 0<6<1,
4 Qo il
then P is (p,q)-convex for every p satisfying
1 6 1-90
P Po po

< The Holder inequality [40, 1.d.2(ii)] is true in a quasi-Banach lattice, since
it is uniformly complete. Moreover, by Proposition 3.15 we have |||z]%|y|'~?|| <
C|lz||?ly||*~% where C is a quasi-norm multiplier. Take z1, ..., 2, € E with |z < 1
(k = 1,...,n). Using this two Holder type inequalities and taking into account
(po, qo)- and (p1, q1)-convexity of P and the the monotonicity property of the quasi-

norm we deduce:
n s/q s0/qo n s(1-0)/q1
(Z |P(ka)|q/s> (Z | P(xy, |q°/s> (Z IP(Ik)V“/S)
k=1 k=1
s/qo |0 s/q
<Z|p |qo/8> <Z|p |q1/5>

n s6/po n s(1-0)/p1
B(zuzkum) (zuxkum)
k=1 k=1

< an@/po-‘rs(l—e)/pl ,

1-0

where B = CM M (Poa0) (P) M (Pra)(P). Putting p := p/q and §:= q/s we see that
limn V0@ = limn=+/7a{" = 0. By Lemma 4.6 D = P(X) is (r, q/s)-convex
for some r > pg = p/s with some convexity constant M. Therefore,

n s/a n Lr n s/(rs)
(Z !P(%’k)!q/s> < M(Z IIP(ka)H’) < M| P <Z Hﬂka”) :
k=1 k=1 k=1

Thus P is (rs, q)-convex and also (p, ¢)-convex, since p < rs. >
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5. L-CONVEXITY AND TYPE

It can be easily seen that a quasi-Banach lattice is p-convex for some 0 < p € R
if and only if its p-concavification is a Banach lattice. At the same time there exist
quasi-Banach lattices which are not p-convex for any 0 < p € R; the corresponding
examples can be found in Cuartero and Triana [13] and Kalton [23]. In [23] Kalton
also discovered an intrinsic characterization of the class of concavifications of Banach
lattices in terms of L-convexity.

DEFINITION 5.1. A quasi-Banach lattice E is said to be L-convez if there exists
C > 0 such that if u,zq,..., 2, € E with maxg<, |zg| < |u| but 1/nd 0 |zg] = |yl
then the inequality holds |u| < C maxg<,, [Tkl

Theorem 5.2. Let E be a quasi-Banach lattice. Then the following are
equivalent:

(1) E is L-convex.

(2) E is 0" -convex.

(3) There exists C' > 0 such that for any finite collection 1, ...z, € E we have

I(m-)

(4) There exists 0 < p € R such that E is p-convex.

< The equivalences (1) <= (4) and (1) <= (3) are due to Kalton, see |23,
Theorem 2.2| and |23, Theorem 4.4|, respectively. The equivalence (1) <= (4)
was proved by Szulga |55, Theorem 4.5]. Both authors used technique of random
variables. >

< Cmax ||zgl|.
k<n

Now, we are going to establish a polynomial version of Theorem 5.2. For this
purpose we need some inequalities obtained in Szulga [55].

DEFINITION 5.3. For 0 < a < oo, let X, denote a positive a-Pareto random
variable, i.e., with the density f(x) = o/z'™ if x > 1 and f(z) = 0if 2 < 1. We
can choose X, = U~/ where U is a random variable uniformly distributed on [0, 1],
i. e., the characteristic function of [0, 1] is the density of U.

Lemma 5.4. Let X; = X, ; be independent copies of an a-Pareto random

variable X,, 0 < a < oo, and (F, | - ||) be a quasi-Banach lattice. The following
assertions hold:
(1) If x4, ...,x, € E then

exp</1n Z% . dﬂ> (ZII%H"‘) N (10)

(2) For every « <r € R and 14, ...,t, € Ry there exists B = B(a,r) such that

n 1/r n 1/
exp (/ln (Zt;XL’]) du) < B(Z ||tj|]°‘> : (11)
j=1 j=1

< See Szulga [55, Theorem 3.2]. >
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Corollary 5.5. Under the hypotheses of Lemma 5.3 we have

n 1/r 1/a
exp< [m (mea,jr) du) (an) RNGES

< This is immediate from 5.3 (1) by concavification in the left-hand side. >

Lemma 5.6. If (E, || -||) is an L-convex quasi-Banach lattice, then the inequality
holds:
n 1/r /r
exp (/ln <Z|ijj|’"> d,u) < O exp (/ln (Z |z X" ) du).
j=1

< See Szulga [55, Proposition 4.4]. >

Theorem 5.7. For quasi-Banach lattices E/ and F' the following are equivalent:

(1) F is L-convex.

(2) If an s-homogeneous polynomial P : E — F is (p, q)-convex for some p,q € R
with 0 < p < ¢ < o0, then P is r-convex for every 0 < r < p.

< (2) = (1) By Aoki-Rolewicz Theorem F'is (p, 1)-convex for some 0 < p <1
and putting in 5.6(2) F = E and P = Ip we get that F' is r-convex for some
0 <7 < p. Thus F'is L-convex by Theorem 5.2.

(1) = (2) Now assume that 5.7 (1) is fulfilled and consider a (p, ¢)-convex s-ho-
mogeneous polynomial P : F — F with 0 < p < ¢ < oo. Take arbitrary 0 < r < p,
n € N, and zy,...,x, € E. Consecutive application of Corollary 5.5, Lemma 5.6,

and Lemma 5.4 (2) yields
n s/r n s/q
<Z |P(;cj)|r/s> exp (/ln (Z ]P(:L'j)XT/S’ﬂq/s) d,u) H
=1 j=1
n s/q
<o ful (Smemar) o
j=1

n S/p
j=1

n s/r
< Blp.r)MEACO (Z W) |
j=1

<

so that P is r-convex. >

DEFINITION 5.8. Let r, be the nth Rademacher function, i.e., r, : [0,1] - R
is defined as 7,(t) =sign(sin2"nt) (¢ € [0,1]). An s-homogeneous polynomial
P : X — Y issaid to have (Rademacher) type p (0 < p < 2) if there exists a constant
C > 0 such that, for any choice of n € N and z4,...,z, € X, the inequality holds:

1 n 1/p
e <Z kausp) .
k=1

[

The least C' with the above property is denoted by 7,(P).

n

> ri(t) Play)

k=1
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The Li-average in Definition 5.8 can be replaced by any L,-average with 0 <
r < oo without altering the definition. Sometimes, it is convenient to use the same
exponents on both sides:

P 1/p n 1/p
( Zm (20) dt) <C<Zuxkusp) .
k=1

This follows immediately from the Kahane inequality, the vector-valued version of

the classical Khintchine inequality.

Theorem 5.9 (Kahane Inequality). If X is a quasi-Banach space and 0 < p <
q < 00, then there exists a constant K = K(p,q) > 1 such that for all n € N and
x1,...,T, € E the inequalities hold:
q 1/q
dt>

K(/

0

1

(/

n

Z Tk(t)l’k

k=1

i ’I“k(t>xk

k=1

P 1/p

< This was proved by Kahane for Banach spaces [19]; the generalization for
quasi-Banach spaces is due to Kalton [22]. >

Theorem 5.10. Let X and Y be quasi-Banach spaces and 0 < p < 1. An
s-homogeneous polynomial P : X — F' is of type p if and only if it is (sp, s)-convex.

< The if part is trivial: the inequality fol | > rey me(t) Pay) || dt < || > opy |P(ze)]]]
implies that P is of type p whenever P is (sp,s)-convex. To prove the converse
assume that P is of type 0 < p < 1 and note that by Aoki-Rolewicz theorem we
may assume that Y is r-normed for some 0 < r < p. Let P : X — Y be an
s-homogeneous polynomial of type p and, for any n € N, define D,, € R, by

—sup{

Then D,, < oo, since for any finite collection z1,...,x, € X we have

n n n 1/p
S Play) <c”-1||P||Z||xk||s<c"-1||P||(Z||xk||sp) .
k=1 k=1 k=1

It is sufficient to prove that the increasing sequence (D,,),en is bounded. Since P is

of type p, the estimate holds:
n 1/p
¢ (Z kaHSP) - (14)
k=1

[|5-nore

For any collection xy,...,x, € X there exist o, = +1 (k= 1,...,n) such that

1/p
lo1P(21) + - -+ + 00 P(2y) (Z||xk’|8p> :

1y, Ty € X Z|]xk||5p<1}. (13)

k=1
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We can assume that if S:= {k: o, = —1} then >, ¢ |||/ < (1/2) Y5, |||/
and hence

1/p

1/p n
<o, (Sladw) <20, (S ) L 09)
k=1

kesS

> P(ay)

kesS

Now, using the representation )} | P(xx) = > ,_; 0% P () + 2>, . P(xx) and
taking into account inequalities (14) and (15) we deduce

kes

n r/p
< (CT+2707YPDY) (Z ||xk||sp) ,
k=1

so that DI < C" + 2"=¥/P)Dr Tt follows that D, < C(1 — 273=1/P))=1/" and the
sequence (Dy,)nen is bounded. >
REMARK 5.11. Putting X =Y and P = Ix in Theorem 5.10 we arrive at the

following assertion: If a quasi-Banach space X is of type p for some 0 < p < 1
then X is (p, 1)-convex. This fact was obtained by Kalton in [22, Theorem 4.2].

T

< + 27

6. FACTORIZATION OF DISJOINTNESS PRESERVING POLYNOMIALS

In this section we give conditions under which a homogeneous disjointness
preserving polynomial P between quasi-Banach lattices admits a factorization
through an L,(u)-space, either in the form P = Q o T or in the form P = T o @),
where () is a homogeneous disjointness preserving polynomial and 7" is a lattice
homomorphism.

DEFINITION 6.1. Let F and F be vector lattices. An order bounded homogeneous
polynomial P : E — F is said to be disjointness preserving (resp., lattice
polymorphism) if its corresponding symmetric s-linear operator P from E® to F
is disjointness preserving in each variable (resp., lattice s-morphism).

Much of the structure of order bounded homogeneous disjointness preserving
polynomials is analogous to that of order bounded disjointness preserving linear
operators. In particular, a Meyer type theorem is valid for such polynomials: An
order bounded disjointness preserving s-homogeneous polynomial P : £ — F' has
the modulus |P|, the positive part P, and the negative part P~ which are s-poly-
morphisms. Moreover, P*(z) = (Pz)", P~(z) = (Pz)~, and |P|(x) = | P(x)] for all
x € E., see [38, Theorem 2.12].

Lemma 6.2. An order bounded s-homogeneous polynomial P : E — F is
disjointness preserving if and only if there exists an order bounded disjointness
preserving linear operator T' : Eyy — F such that Px = T'(2°°) for all + € E. In
particular, any order bounded homogeneous disjointness preserving polynomial is
orthogonally additive.

< See Kusraeva [38, Theorem 3.9]. >
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Lemma 6.3. An s-homogeneous polynomial P : E — F' is a polymorphism if
and only if there exist a vector lattice G and a lattice homomorphism S : £ — G
such that G ) is a sublattice of F' and Px = (Sx)*® for all v € E.

< See Kusraeva |38, Corollary 3.10]. >

Lemma 6.4. Let P : E — F be an s-homogeneous polynomorphism, 0 < q <
p < oo, and xq,...,x, € E. Then

() "= ((Em)")

< Clearly, P in Lemma 6.2 is a polymorphism if and only if 7" is a lattice
homomorphism. Thus, the claim follows from Proposition 3.4 and Corollary 3.9. >

Proposition 6.5. If P : E — F'is a homogeneous polymorphism between quasi-
Banach lattices, then M®9(P) < M®9(E)||P| and My, y(P) < My (E)||P].
If E is (p, q)-convex (F is (p, q)-concave), then P is (p,q)-convex ((p,q)-concave).

< This is immediate from Lemma 6.4 and Definitions 3.11, 4.1, and 4.2. >

Two factorization results proved by Raynaud and Tradacete in [51, Theorems 1
and 3| enables one to reduce famous Krivin’s factorization theorem [28| to factori-
zation of lattice homomorphisms between quasi-Banach lattice, see [51, Lemma 17].
An easy generalization of the latter to disjointness preserving linear operators is
given in the following result. The proof runs along the lines of the paper [51] and is
provided for the convenience of the reader.

Theorem 6.6. Let E/ be a p-convex quasi-Banach lattice and F' a p-concave quasi-
Banach lattice with 0 < p € R. Then each disjointness preserving linear operator
H from E to F factors through some L,(;) and the two factors are disjointness
preserving linear operators any of which can be chosen to be a lattice homomorphism.
If H is a lattice homomorphism then both factors may be chosen to be lattice
homomorphisms.

<1 Assume first that H : E — F is a lattice homomorphism. By Lemma 3.13
we may assume F,) is a Banach lattice and by Lemma 3.10 H, is a lattice
homomorphism from E,y to F{,. Observe that the function ¢ : E;) — R defined
by ¢(u) = ||H(u)||@) /|| H]|| is superlinear. Indeed, ¢ is obviously homogeneous, and
taking into account Lemma 3.4 and p-concavity of F', for u, = v,(zy) with z;, € E
and £ = 1,2 we have

1y (ur ® u2) ) = || Hp(wr) © Hy(ua) gy = | (H (1)? + H(2)") 7 ||”
> |[[H(z)[]” + [[H (z)[|” = [1Hp(us) ) + [[Hp(u2) | )

so that @(uy ® ug) > (ur) + ¢(uz). It follows that the set {p > ||H||}T consisting
of all u € E, with H,(u) > 0 and ||¢|| > 1} is convex and disjoint from the interior
of the unit ball B in E(p). Using the Hahn-Banach theorem, we can find a nonzero
continuous linear functional f € Ej, such that sup f(B) < inf f({y > 1}"). This
inequality implies that f is positive and ¢(u) < f(Ju]) < |luf| for all u € Ey,).
In particular, ker(f) C ker(H,).
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Define an AL-space L as the completion of the quotient space Ey/ker(f)
endowed with a lattice norm induced by a seminorm u — f(|u]) (u € E,)). By
Kakutani representation theorem L is isometrically lattice isomorphic to Ly (p) :=
Li(Q,%, u) for some localizable measure space (£2,%, 1). Denote by T the lattice
homomorphism from E, to L;(4) induced by the quotient mapping Ey,y —
E()/ ker(f) and observe that p(u) < [|T(w)|| < |Jul for all u € E,. This inequality
implies ker(T) C ker(H,) and thus there is a linear operator Sy : T(E(,)) — Fiy)
such that H, = Sy o T. Clearly Sy is a norm bounded lattice homomorphism. Since
T(E(y)) is dense in L, (), Sp admits a norm bounded extension S to the whole Ly (x)
which is also a lattice homomorphism satisfying H, = So T.

Finally, we apply a g-convexification procedure with ¢ = 1/p to E, and F{;,, and
observe that (Ey))q) = E, (Fip)) = F, and (H,); = H. Moreover, (Li(1))(q) =
Ly() and H =S oT with S =S5, and T = T,.

Consider now the case of an order bounded disjointness preserving operator H.
By Meyer theorem H = H; — H, with H; and H, lattice homomorphisms and
H,(F) L Hy(E), see [46, Theorem 3.1.4]. On the basis of the result just proved we
can find localizable measure spaces (£, Xk, ) and lattice homomorphisms Sy €
L(L,(ug), F) and T, € L(E, L,(ux)) (k = 1,2) such that H; = Sy 0T} and Hy =
Sp0Ty. Denote by (2, X, i) the direct sum of (21, 31, 1) and (Qg, 3o, p2) and identify
L,(11) and Ly (p2) with the complementary band in L,(p). Then H = SoT whenever
S=5—-SandT=T+T,or S =5 +9 and T =T, — T,. Clearly, S; + 5,
and 17 + Ty are lattice homomorphisms and S; — S5 and T} — T5 are disjointness
preserving. >

Theorem 6.7. Let E and F be quasi-Banach lattices and 0 < p € R. For
an arbitrary order bounded disjointness preserving s-homogeneous polynomial P
from E to F' the following hold:

(1) If E is ps-convex and F' is p-concave then there exist a localizable measure
space (2, X, i), a disjointness preserving s-homogeneous polynomial Q) : E — L,(1)
and a disjointness preserving linear operator S : L,(u) — F such that P = S o Q.
Moreover, any of S and () may be chosen positive.

(2) If E is p-convex and F is ps-concave then there exist a localizable measure
space (2, %, i), an s-polymorphism @) : L,(p) — F, and a lattice homomorphism
T:E — Ly(u), such that P=QoT.

< (1): Consider an order bounded disjointness preserving s-homogeneous
polynomial P from a ps-convex quasi-Banach lattice £ to a p-concave quasi-Banach
lattice F'. By Lemma 6.2 P = H o j, for some order bounded disjointness preserving
linear operator H : FE(,) — F and E(y) is a p-convex quasi-Banach lattice according
to Corollary 3.12. In view of Theorem 6.6 there exist a localizable measure space
(€2,%, 1) and order bounded disjointness preserving linear operators 7' : Ey —
L,() and S : L,(n) — F such that H = SoT and thus P = SoT o), =ToQ
with S and Q =T oy, : E — L,(p) disjointness preserving. Any of S and () may
be chosen positive, since this is true for S and T' by Theorem 6.6.

(2): Assume now that E is p-convex and F' is ps-concave. By Lemma 6.2 there
exists a vector lattice G such that Gy is a sublattice of ' and P = j, 0 H for some
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disjointness preserving linear operator H : E — G. Observe that the closure G of
G(s in F'is a ps-concave quasi-Banach lattice, while C_J(l/s) is a p-concave quasi-
Banach lattice by Corollary 3.12. Moreover, G is embedded into G(l/s) and we may
assume that H acts from F to G(l/s). In view of Theorem 6.6 there exist a localizable
measure space (€2, %, 1), a disjointness preserving linear operator 7' : £ — L,(p),
and lattice homomorphism S : L,(u) — Gs) such that H = S o T and thus
P=j),0T =QoT with Q = j,0S5 : L,(r) = F being an s-polymorphism. It
remains to note that the range space of () is contained in js(@(l/s)) = G which in
turn is a sublattice in F'. >

7. (p,q)-CONVEX ORTHOGONALLY ADDITIVE POLYNOMIALS

This Section deals with the special case of homogeneous orthogonally additive
polynomials. The properties of this class of polynomials resemble very much those of
linear operators. Linearization results (Theorem 2.10 and Corollaries 2.11 and 2.12)
enables one to transfer theorems about linear operators to results about orthogonally
additive polynomials. We restrict our consideration to a few remarks concerning
convexity, concavity, and factorization of orthogonally additive polynomials.

Proposition 7.1. Let E and F' be quasi-Banach lattices, s € N, and p,q € R
with 0 < p < g < oo and p < oo. Let T : E,) — F be a positive linear operator.
The polynomial T o 35 : E — F is (p, q)-convex if and only if T is (p/s, q/s)-convex.
Moreover, M P9 (P) = M®/*a/9)(T),

< If T is (p/s,q/s)-convex then using the representation of Corollary 2.12,
Definition of (E(y), || - ||(s)), and by Corollary 3.9 we have

m m s/q
H (Z IP(wk)lq“) 'I <Z IT(SUZQ)I"/S>
s/p

anen( Ses) = S

Thus P is (p, q)-convex and M P9I (P) < M@/*a/5)(T),
Now, assume that P is (p, ¢)-convex and take uy, ..., u, € Eq. If 2 := ¢ (uy)
then |ug| = |2;°] =

|z |*® and using the same argument we deduce

s/q m s/q
H (Z ‘T m ‘Q/s> (Z(T‘xk‘se)fﬂs)
(& o)

m s/p s/p
< M®P9(Pp) <Z ||xk||p> = M®PD(p (Z ”uk“p/s) '
k=1
It follows that T is (p/s, q/s)-convex and M®PD(P) > M®/54/*)(T), >

(s)
Proposition 7.2. Let EY be a quasi-Banach lattices and Y a quasi-Banach space,
seN,andp,ge Rwith0 <p<g<oocandp<oo. LetT: E — Y be a positive

<
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linear operator. The polynomial T o 35 : E — F' is (p, q)-concave if and only if T is
(p/s,q/s)-concave. Moreover, M, q)(P) = Mp/s.q/5)(T).

< The proof is similar to that of Proposition 7.1. >

Proposition 7.3. Let E and F' be quasi-Banach lattices and T a positive linear
operator from E to F. Then for every 1 < p < oo and every finite collection
T1,...,Tm € E we have

m 1/p m 1/p
H (Z\T(fﬂk)!p> (Z!fﬂd”) :

< The proof in [40, Proposition 1.d.9] works by using the monotonicity of the
quasi-norm in F'. >

< |17 (16)

Proposition 7.4. Let E and F' be quasi-Banach lattices and P a positive s-ho-
mogeneous orthogonally additive polynomial from E to F'. Then for every 1 < p € R
and every finite collection x1,...,x,, € EE we have

m 1/p m 1/(ps)|s
k=1 k=1

< From Proposition 7.3 and Corollary 3.9 we deduce

m 1/p m 1/p
(Z |P(:rk)|p) = H (Z |T(x2®)|p>
k:Ll 1/p o m 1/(ps)
< |7 <Z|ﬂf2@|”> (ZI%I”)

Proposition 7.5. Let E be a quasi-Banach lattice, s € N and 0 < p,q € R.
Then the following assertions are equivalent:

< [Pl (17)

=Pl
(s)

(1) E is (p, q)-convex.

(2) E*® is (p/s, q/s)-convex.

(3) The canonical polynomial x — z*° from E to E*° is (p, q)-convex.

(4) For every quasi-Banach lattice F', each positive orthogonally additive s-ho-
mogeneous polynomial P from E to F is (p, q)-convex.

(5) For every quasi-Banach lattice F', each positive linear operator T from E to F’
is (p, q)-convex.

< The equivalence (1) <= (2) follows from Corollary 3.12 (see also [55,
Proposition 4.8(iii)|, while (2) <= (3) is immediate from the Definitions 3.11 and 4.1
and Corollary 3.9. The implications (4) = (3) and (5) == (1) are easily seen by
putting P = j; and T' = Ig and (5) is the particular case of (4) with s = 1. It remains
to ensure (1) = (4).

Assume that F is (p,q)-convex and take a positive orthogonally additive s-ho-
mogeneous polynomial P from E to a quasi-Banach lattice F'. By Corollary 2.12

< ~—
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the representation P(z) = T'(2°°) (z € E) holds with a positive linear operator T
from E°° to F. Making use of Proposition 7.4, Definitions 4.1 and 3.11 we estimate

(S} e ((Er) )

m 1/qs
=Pl (lequ>
k=1

ensuring that P is (p, ¢)-convex. >

< 1Pl

(s)

m 5/17
< HPHM(I”Q)(E)<Z ka””> 7
k=1

Theorem 7.6. Let E be a quasi-Banach lattice, X a quasi-Banach spaces, s € N,
and 0 < p < o0. A linear operator T' : E — X is p-concave if and only if there exist
a p-concave quasi-Banach lattice F', a bounded linear operator S : F' — X, and an
order interval preserving lattice homomorphism R : E — F' with dense image such
that T'= S o R.

< The proof given in Raynaud and Tradacete |51, Theorem 1] for the case of
Banach lattices and p > 1 works with minor modifications, see [51, Remark 6]. >

Theorem 7.7. Let I/ be a quasi-Banach lattice, Y a quasi-Banach space, s € N,
and 0 < p < co. An s-homogeneous orthogonally additive polynomial P : E — Y is
p-concave if and only if there exist a p/s-concave quasi-Banach lattice F', a bounded
linear operator S : F' — Y, and an order preserving lattice polymorphism @) : E — F
with dense image such that P = S o Q).

< According to Corollary 2.11 the representation P = T o j; holds with a
linear operator T' : E() — Y which is p/s-concave by Proposition 7.1. In view
of Theorem 7.6 here exist a p/s-concave quasi-Banach lattice F', a bounded linear
operator S : ' — X, and an order preserving lattice homomorphism R : £ — F
with dense image such that P = S o R o j,. Putting () := R o j, and taking into
account Lemma 6.2 we arrive at the required conclusion. >

Theorem 7.8. Let F' be an L-convex quasi-Banach lattice. Then there exists
a constant A depending only on F' such that whenever E is a quasi-Banach lattice
and P : E — F'is a bounded orthogonally additive s-homogeneous polynomial then
for any finite collection x4, ...,x, € E the inequality holds:

n 1/2 n 1/(2s) )18
H (Z IP(xk)F) (Z kal25>

k=1

< Write P as P = T o j, with a bounded linear operator from a quasi-Banach
lattice E() to an L-space F. By Kalton’s result (a generalization of the Krivine’s
version of Grothendieck’s theorem) [23, Theorem 3.3] for any finite collection

x1,...,T, we have
n 1/2
SO |2
k=1

< A||P|

< AllP|

" 1/2
(Z IT(xZ®)|2>

It remains to apply Proposition 3.9. >
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Corollary 7.9. Let E and F' be quasi-Banach lattices and P : FF — F an
orthogonally additive bounded s-homogeneous polynomial. Then the following hold:

(1) If E is 2s-convex then P is 2s-convex.

(2) If F' is 2-concave then P is 2s-concave.

8. FACTORIZATION OF p-CONVEX POLYNOMIALS

In this section we show that a p-convex homogeneous polynomial can be factored
through a p-convex quasi-Banach lattice. This fact together with Theorem 6.7
enables us to obtain Krivine’s type factorization for homogeneous polynomials.

DEFINITION 8.1. A subset U of a vector space is called balanced if \U C U for all
A € R with |A] < 1. A subset U of a vector lattice is called solid whenever |z| < |y|
and y € U imply z € U.

Lemma 8.2. Let U be a solid balanced subset of a vector lattice E containing no
lines. Let || - || be the Minkowski functional of U and Ey:= {x € E : ||z|jy < co}.
Then (Ey, | - ||v) is quasi-Banach lattice if and only if there exists C' > 0 such that
the following hold:

(WU+UcCC-U.

(2) For any pair of sequences (\) in Ry and (zy) in E with >~ Ay < oo and
Ckx), € \U for all k € N there exist z € E and a sequence (v;) in R such that
limy, =0and z — ) ,_, xx € v, U for allm € N.

< Evidently, 8.2 (1) is equivalent to 3.1 (3), while 8.2(2) is a rephrased version
of the criterion of completeness: A quasi-normed space Ej is complete if and only if
oo C*||ak|ly < oo implies that the series Y ;- | @y, is converent in Eq. >

Lemma 8.3. (Ey, || - ||v) is p-convex if and only if, there exists M > 0 such that

n 1/p
(Z|O&kl’k|p> e MU
k=1

for all finite sequences x,...,z, € U and o, ..., 0, € Ry with >}, of = L.

< The only if part is obvious with M = M®(F). To ensure the if part pick
arbitrary x1,...,2, € F and 0 < ¢ € R and put o(¢) :== (3 ,_,(lz]| + &)?)¥/?,
o= (||zx]| +€)/o(e). Then zp/(||zk|| +¢) € U, > ;_, ok =1 and

(3 et " (3

k=1 k=1

i

g —— N € Mo(e)U
el + '

It follows that ||(>p_, |zx[?)Y?|| < Mo(e) and sending e to zero yields p-convexity
of F. >

Theorem 8.4. Let X be a quasi-Banach space, E' a quasi-Banach lattice, s € N,
and 0 < p < oo0. A bounded s-homogeneous polynomial P : X — FE is p-convex if
and only if there exist a ps-convex Banach lattice GG, an injective interval preserving
lattice homomorphism S : G — E and a bounded s-homogeneous polynomial () :
X — G such that P =S50 Q.
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< Assume that P : X — E is a p-convex s-homogeneous polynomial. Put P:=
t1/s © P where v/, : B — E(/s is a nonlinear order isomorphism in Lemma 3.4.
Define the set U C E(1/4) by

U:= {UEE(l/S) : (HRGN) (3.1'1,...,$n GX)

n 1/p n
i< (S 1Pwr) e Y ey =1
k=1

k=1
Let U and || - || stand for the closure of U in E(;;s) and the Minkowski functional
of U, respectively. If |u;| < (302, |P(z;)|P)/P and Y0  |lzxllP = 1 for j = 1,2,
then we estimate

n m 1/p
] @ Jug] < 2(2 Pl vy |P<as2k>|f°)
k=1 k=1

" m 1/p
< 9l+1/p ( Z P20 /2YP)P + Z ‘P($2k/21/p)’p) ;
k=1 k=1

Sl /2P ) w27 = 1.
k=1 k=1

It follows that Uy U C 217V/P0 and Uy, U C U @y U C 217170, s0 that 8.2 (1)
is fulfilled with C' = 2'1/?. Denote F = | J;°, kU and note that F is an order ideal
in E(1/s) and || - || is a monotone quasi-norm. Let C' stands for the quasi-triangle
constant of F.

Observe that if uw € U then by Corollary 3.9 we have

Julls < H(Z' Peop) v (;‘Pm)lp/s)sm E

n 1/p
<uo)(Llnlr) = a0
k=1

whence U C M®(P)V where V = {|| - |z < 1}. It follows that U C M® (P)V and
hence M®(P)||ul|g < ||ullz for all u € Ey. In particular, U is closed in the topology
of || - |7 and ||u|lz = 0 implies u = 0.

In order to ensure that F' is complete consider the sequences (\;) in R, and (zy)
in F' with Zzozl \e < 0o and C*xj, € \,U for all k € N. Then C*y;, € A,V where
yr = 1x/M®P(P) and, since E( /s is complete, there exist y € £ and a sequence
(v) in R such that limy, = 0 and y — >, yx € v,U for all n € N. Clearly,
z=yM®P(P) =37 x4 in E(1/s). Denote 0,,:= Y ,_, zx and estimate

1/s

E<1/5> H

n+m B n+m B n+m
[nsm = onllr < D> C*Mlaullp < D CHllanllp < D A —0.
k=n+1 k=n+1 k=n+1

It follows that for an arbitrary € > 0 we can find N € N such that ||0y4m —on|lg < €
and consequently 0,1, — 0, € eU for all n > N and m € N. Since U is closed in F,
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T — 0y = liMy o0 (Cnpm — 0n) € €U for all n > N, which implies that z = Y ore Tk
in F.

Prove that F' is p-convex. Let ai,...,a, € Ry and Y ,_,aof = 1. Given
ug,...,u, € U, there are finite sequences zyj,...,x, € X such that |uy| <
(OB | P(24;)[P)/* and >k lz|lP = 1 for all k& = 1,...,n. Using Lemma 3.8

and p-convexity of P we deduce:
n_ % s/p
< (XX iposr)

n 1/p n LU 1/p
() ()
k=1 k=1 j=1 k=1 j=1

n ng 1/p
< M<p><P>(Zo/; 3 ||xk||p) _ MW(P),
k=1 j=1

It follows that (3°,_, ax|ux[P)/? € M@PU. Take now vy, ...,v, € U and choose the
sequences (ug;)jen in U such that vy = lim;_,cuy; for all k = 1,... ,n. Put v =
(qv1, ..., auv,) and vy = (quyj, ..., anuy;) (5 € N). Define o(t) = (3 p_, [t[P)Y/?
for t = (t1,...,t,) € R™. By what we have proved p(u;) € M®PU and p(v) =
lim p(u;) € M®U by Lemma 3.6. Thus, according to Lemma 8.3 Ej is p-convex.
G:= Fl) is ps-convex and P(X) C G C E. If S: G — E is a formal inclusion and
Q:=S"'oP,then P=SoP.>

The particular case s = 1 of this last result extends Krivin’s theorem [28], see
also [40, Theorem 1.d.11].

Theorem 8.5. Let X and Y be quasi-Banach spaces, E' a quasi-Banach lattice,

se€N and 0 < p<oo. If P: X — FE is a p/s-convex s-homogeneous polynomial
and S : E — Y is p-concave linear operator then there exist a localizable measure
space (§2, 2, ), an s-homogeneous polynomial Q) : X — L,(p) and a bounded linear
operator P : L,(u1) — Y, such that So P =T o Q.

< Put together Theorem 6.7, Theorem 7.7, and Theorem 8.4. >

9. p-CONVEX LATTICES OF LINEAR OPERATORS AND POLYNOMIALS

In this section we study the following natural questions: When is the quasi-
Banach lattice of regular linear operators or regular polynomials between quasi
Banach lattices (p, q)-convex? (p, q)-concave? geometrically convex?

DEFINITION 9.1. A gauge is a sublinear function ¢ : R* — R, U {+o00}. For
s,t €R, s =(s1,...,8n), and t = (t1,...,t,), denote (s,t):= > 7_| sitx. The polar
function ¢° of a gauge ¢ is defined by (with the conventions inf @ = 400 and
0(+00) = 0)

e’ (t):=inf{A > 0: (Vs € R")(s,t) < Ap(s)} (t€R").

Denote by 4, (R™) the set of all continuous gauges ¢ : R" — R, .
Thus, ¢° : R" — R, U {400} is also a gauge and the inequality holds

(s,t)y < @(s)p°(t) (s,t €R").
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Moreover, the polar function (° can be also calculated by by the formula

N
P = s

= sup{<$,t> : seR", 90(8) < 1} (t € Rn)>

(with the conventions /0 = +o0o for a > 0 and «/0 = 0 for a < 0).
We need some auxiliary results concerning homogeneous functions of regular
linear and bilinear operators (see Lemmas 9.2, 9.7 and 9.9 below).

Lemma 9.2. Let E' and F' be uniformly complete vector lattices with F' Dedekind
complete and ¢ € 4,(RY). Then for xy,..., oy € E and Ty,...,Ty € L~(E, F) the
inequality holds:

zmk o(T1, o Th) (@ (@1, ).

< See Kusraev 32, Corollary 4.5]. >

Theorem 9.3. Let E and F' be quasi-Banach lattices with F' Dedekind complete.
Then £"(E, F) is a (p,q)-concave quasi-Banach lattice for some 1 < ¢ < p < o©
whenever E is (¢, p')-convex with p' = p/(p — 1) and ¢ = q/(q — 1). Moreover,
M (Z7(B, F)) < M@P)(E).

< Take a finite collection of regular operators Ty,...,T, € Z(E, F). Denote
B(E) = {zx € E : |x| < 1}). Using Proposition 3.3, Lemma 9.2 with ¢(t) =
Oor 1tkP)YP and ¢°(t) = (O, [te[”)Y?, and the (¢, p)-concavity of E, we have

n 1/q
(Z||Tk|]q) —sup{ZakHTkH ar €ER, (k<neN), Zakzl}
k=1

k=1
= sup { Z [T (arzr)|| : o € Ry, 2 € B(E)y, Zak = 1}
k=1
< sup SUP{Z|T1<:|(%|%|) Doy € Ry, Zo‘k —1}H
TR EB(E)+ k=1

< sup (Z|Tk|p) (Zlakﬂfﬂp/)

2k €EB(E)+ ad "t +a%—1
< sup (Z|Tk|p) <Z|Ozk$k|p)
k=1

2Ek€B(E)+

n 1/p
< M(q/,p')(E) H (Z ‘Tk|p>
k=1

The last inequality follows from the fact that if ||z < 1 and o + - + a2 = 1
then || (Y-, |akxk|p')1/p | < MWP)(E) due to (¢, p)-convexity of E. >
Corollary 9.4. Let I/ and F' be quasi-Banach lattices with F' Dedekind complete.

Then &Z;(°E,F) is a (p,q)-concave quasi-Banach lattice for some 1 < p,q < o0
whenever E is (sp', sq')-convex. Moreover, M, (25 (*E, F)) < M7 Sp)(E).

<1 This is immediate from Theorem 9.3, Corollary 2.12, and Lemma 3.12. >

a + +aq =1
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DEFINITION 9.5. A quasi-Banach lattice F is said to be quasi-AM-space
whenever it is co-convez, i.e., there exists a constant C' such that

V lzell| < C\/ llall;
k=1 k=1
for every finite collection {x1, ..., z,} in E, see Definition 4.11. The smallest possible

constant C' is called the oo-converity constant and is denoted by M=) (E).

Proposition 9.6. For a quasi-AM-space (E, || - ||) there is an equivalent quasi-
norm ||[-|| such that ||z V yl|| = ||=[| v lly[| for all z,y € E.

< If || - || is a monotone quasi-norm on E then 1/M©)|z|| < ||z < ||z|| for all
x € E whenever a quasi-norm |||-|| : £ — R is defined as

m m
| := inf{ V llzell : el =\ |l 21, 2 € By m € N},
k=1 k=1

see Proposition 3.13 with p = ¢ = co0. >

Lemma 9.7. Let E and F be vector lattices with E uniformly complete and
F Dedekind complete. Assume that ¢ € ¥4, (R") is increasing and Ti,...,T, €
LT (E,F). Then for every x € E, the representation holds

o(Ty, ..., Ty)x = sup{ZTkxk sy, 1) < x}
k=1

< See Kusraev |31, Theorem 3.4|. >

DEFINITION 9.8. A quasi-Banach lattice (£, ||-| is said to have the Fatou property
(or its norm is Fatou) if 0 < z, T @ implies ||z, || T ||z|| for all z € E and (z,) C E.

Theorem 9.9. Let E be a quasi-Banach lattices and F' be a Dedekind complete
quasi-AM-space having the Fatou property. Then £"(E, F) is a (p, q)-convex quasi-
Banach lattice for some 1 < p,q < oo whenever F is (¢,p’)-concave with p' =
p/(p—1) and ¢ = q/(q — 1). Moreover, M»9 (L™ (E, F)) < M®)(F) My 4 (E).

< Take a finite collection of regular operators T1,...,T, € ZL(E,F). Put M :=
M©®)(F) and M":= M 4 (E). Using Lemma 9.7, Definition 9.6, Fatou property
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in F, and (¢, p')-concavity of E, we deduce the estimates

n 1/q n 1/q
[(Sme) | =sw{|(Ximr) @] oceer <1
k=1 k=1
n n 1/q
Sup{ZTkxk: (Z|xk|q,) Sx}’
z€B(E) k=1 k=1
n n N\ Ve
<Msup{2uTk||nxkn: H(Zw) <1}
k=1 k=1
n n , 1/p’
<Msup{2uTk||nxkn: (anknp) <M'}
k=1 k=1
n 1/p
< MM'(Z uTkup)

k=1

sup

from which (p, ¢)-convexity of £"(E, F) and the required estimate follows. >

Corollary 9.10. Let E and F be as in Theorem 9.8. Then &) (°E, F) is a (p, q)-
convex quasi-Banach lattice for some 1 < p,q < oo whenever E is (sq', sp’)-con-
cave with p' = p/(p — 1) and ¢ = q/(q — 1). Moreover, MP9 (2" (*E, F)) <
M) My sqr) (E).

<1 This is immediate from Theorem 9.9, Corollary 2.12, and Lemma 3.12. >

Lemma 9.11. Let E and F be vector lattices with E uniformly complete and
F' Dedekind complete. Then for T,...,T, € LY(E,F), x1,...,z, € E., and
ag,...,a, € Ry with oy + -+ 4+ a,, = 1 we have

(TP T ) (2 oxon) < (Thay)™ .. (Thx,) .

< See Kusraev [31, Proposition 3.3|. >

Theorem 9.12. Let E and F be quasi-Banach lattices with F Dedekind
complete. If F' is geometrically convex then £ (E, F) is also geometrically convex.
Moreover, MO (£ (E, F)) < MO)(F).

< Take a finite collection of positive operators T1,...,7T, € Z(E, F) and apply
formula (2), 0-convexity of F, and Lemma 9.11:

[T T = sup [[(Th- o T) (- 2) )|
el <1, 220
< swp |[(Ti() .. - Tu(@)""|
el <1, 20
<MOVF) sup (|Ta(@)] - .. - 1T (@))"
el <1, 220
< MOYFY(TY] - ... [T >

Corollary 9.13. Let E and F be quasi-Banach lattices with F' Dedekind
complete. If F' is geometrically convex then &) (*E, F) is also geometrically convex.
Moreover, MO)( 21 (*E, F)) < MO)(F).
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