


УДК 517.98 Дата поступления 3 сентября 2012 г.

Кусраев А. Г. AL-пространства в булевозначных моделях и инъективные банаховы
решетки.—Владикавказ, 2012.—16 с.—(Препринт / ЮМИ ВНЦ РАН; № 2).

Цель статьи — дать обзор недавних результатов об инъективных банаховых решетках;
излагается булевозначный подход к проблеме и формулируются нерешенные задачи. Цен-
тральная идея исследования — булевозначный принцип переноса с AL-пространств на инъ-
ективные банаховы решетки: каждая инъективная банахова решетка допускает погружение
в подходящую булевозначную модель, превращаясь при этом в AL-пространство. В каче-
стве приложения дается описание инъективных банаховых решеток, аналогичное описанию
AL-пространств.

Ключевые слова: AL-пространство, AM -пространство, инъективная банахова решет-
ка, булевозначная модель, булевозначный принцип переноса, однородная банахова решетка,
представление инъективных банаховых решеток.

Библиогр. 45.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных ис-
следований, проект № 12-01-00623-а.

Received September 3, 2012

Kusraev A.G. Boolean-Valued AL-Spaces and Injective Banach Lattices.—Vladikavkaz, 2012.—
16 p.—(Preprint / SMI VSC RAS; № 2).

The aim of this work is to survey recent results on injective Banach lattices, outline a Boolean-
valued approach, and pose some open problems. The central idea to the investigation is a Boolean-
valued transfer principle from AL-spaces to injective Banach lattices: Every injective Banach
lattice embeds into an appropriate Boolean-valued model, becoming an AL-space. To illustrate
the method, a concrete description of injective Banach lattices similar to that of AL-spaces is
presented.

Mathematics Subject Classification (2000): 46A40, 47B60, 12F20, 03C90, 03C98.
Keywords: AL-space, AM -space, injective Banach lattice, Boolean-valued model, Boolean-

valued transfer principle, homogeneous Banach lattice, representation of injective Banach lattices.

Supported by a grant from the Russian Foundation for Basic Research, project № 12-01-00623-a.

Southern Mathematical Institute
of Vladikavkaz Science Center of the RAS
Vladikavkaz, 362027, RUSSIA

c© Southern Mathematical Institute
of the VSC RAS, 2012

c© A. G. Kusraev, 2012



BOOLEAN-VALUED AL-SPACES
AND INJECTIVE BANACH LATTICES1

A. G. Kusraev

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Banach Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3. Injective Banach Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4. Characterization of Injective Banach Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5. Boolean-Valued Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

6. The Universe of Boolean-Valued Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

7. Ascending and Descending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

8. Boolean-Valued Reals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

9. Boolean-Valued Banach Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

10. Boolean-Valued AL-Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

11. Direct Sums of Injective Banach Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

12 Tensor Products of Injective Banach Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

13. Representation of AL-Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

14. Representation of Injective Banach Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

15. Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1Supported by a grant from the Russian Foundation for Basic Research, project № 12-01-00623-a.





1. Introduction

The aim of this work is to survey recent results on injective Banach lattices

obtained in [20, 21, 22], outline a Boolean-valued approach, and pose some open

problems. The central idea to the investigation is a Boolean-valued transfer principle

from AL-spaces to injective Banach lattices: It was announced in [22] and proved

in [20] that every injective Banach lattice embeds into an appropriate Boolean-valued

model, becoming an AL-space. According to this fact and fundamental principles of

Boolean-valued models, each theorem about the AL-space within Zermelo–Fraenkel

set theory has its counterpart for the original injective Banach lattice interpreted

as the Boolean-valued AL-space. To illustrate the method we present a concrete

description of injective Banach lattices similar to that of AL-spaces which relays

upon Maharam’s representation of measure algebras [11, 37].

2. Banach Lattices

A Banach lattice is a Banach space over the reals that is equipped with a partial

order 6 for which the supremum x ∨ y and the infimum x ∧ y exist for all vectors

x, y ∈ X, and such that the positive cone X+ := {x ∈ X : 0 6 x} is closed under

addition and multiplication by nonnegative real numbers and the order is connected

to the norm by the condition that |x| 6 |y| =⇒ ‖x‖ 6 ‖y‖, where the absolute

value is defined by |x| := x ∨ (−x). All classical Banach spaces (Lp, lp, C(K),

c, c0) are Banach lattices. A band in a Banach lattice X is a subset of the form

A⊥ := {x ∈ X : (∀a ∈ A) |x| ∧ |a| = 0}. A band B in X that satisfies X = B ⊕ B⊥
is referred to as a projection band, while the associated projection is called a band

projection. Let P(X) stand for the Boolean algebra of band projections in X.

A linear mapping T from a Banach lattice X to a Banach lattice Y is called

positive if it sends positive vectors to positive vectors, i. e., T (X+) ⊂ Y+. If a positive

operator preserves the lattice operations, it is called a lattice homomorphism. A one-

to-one surjective lattice homomorphism is called a lattice isomorphism. A lattice

isometry is a lattice isomorphism which is also an isometry.

Two classes of Banach lattices play a significant role in the Banach lattice theory.

Definition 1. A Banach lattice X is said to be an AL-space (AM -space) if

‖x + y‖ = ‖x‖ + ‖y‖ (resp. ‖x ∨ y‖ = max{‖x‖, ‖y‖}) whenever |x| ∧ |y| = 0. An

AM -space has a (strong order) unit u > 0 if the unit ball of X is the order interval

[−u, u] := {x : −u 6 x 6 u}.
Kakutani Representation Theorem. An arbitrary AL-space is lattice isomet-

ric to Lp(µ) for some measure µ.

Krĕıns–Kakutani Representation Theorem. An AM -space is lattice iso-

metric to a sublattice of C(K) for some compact Hausdorff space K. Moreover, if

the AM -space has a strong order unit then it is lattice isometric to C(K) itself.
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Remark 1. Banach lattices were first considered by Kantorovich [17]. For an

extensive treatment of Banach lattices see [2, 25, 30, 34, 35].

3. Injective Banach Lattices

Definition 2. A real Banach lattice X is said to be injective if, for every Banach

lattice Y , every closed vector sublattice Y0 ⊂ Y , and every positive linear operator

T0 : Y0 → X there exists a positive linear extension T : Y → X with ‖T0‖ = ‖T‖.
This definition is illustrated by the commutative (T0 = T ◦ ι) diagram:

Y0 Yι
//

X

Y0

??

T0

��
��

��
��

��
�
X

Y

__

T

?
?

?
?

?
?

Equivalently, X is an injective Banach lattice if, whenever X is lattice isometri-

cally imbedded into a Banach lattice Y , there exists a positive contractive projection

from Y onto X.

Thus, the injective Banach lattices are the injective objects in the category of Ba-

nach lattices with the positive contractions as morphisms. Arendt [3, Theorem 2.2]

proved that the injective objects are the same if the regular operators with con-

tractive modulus are taken as morphisms. More details concerning injective Banach

lattices see in Lotz [28], Cartwright [7], Haydon [15], Buskes [6], and Wickstead [44].

Lotz [28] was the first who introduced this concept and proved among other

things the following two results.

Theorem 1 (Lotz, [28]). A Dedekind complete AM -space with unit is an injec-

tive Banach lattice.

Taking into account the Krĕıns–Kakutani Representation Theorem one can state

Theorem 1 equivalently: The Banach lattice of continuous function C(K) is injective,

whenever K is an extremally disconnected Hausdorff compact topological space.

Theorem 2 (Lotz, [28]). Every AL-space is an injective Banach lattice.

The result shows that there is an essential difference between injective Banach

lattices and injective Banach spaces, since C(K) with extremally disconnected com-

pactum K is the only (up to isometric isomorphism) injective object in the category

of Banach spaces and linear contractions.

Remark 2. A Banach lattice X is called λ-injective if ‖T‖ 6 λ‖T0‖ in Def-

inition 2. In what follows injective means 1-injective; λ-injective Banach lattices

(λ > 1) are not considered. For λ-injective Banach lattices (λ > 1) see [26, 27, 29].

4. Characterization of Injective Banach Lattices

Definition 3. A Banach lattice X has the splitting property (or the Cartwright

property) if, given x1, x2, y ∈ X+ with ‖x1‖ 6 1, ‖x2‖ 6 1, and ‖x1 + x2 + y‖ 6 2,

there exist y1, y2 ∈ X+ such that y1 + y2 = y, ‖x1 + y1‖ 6 1, and ‖x2 + y2‖ 6 1.
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Theorem 3 (Cartwright, [7]). A Banach lattice has the splitting property if and

only if its second dual is injective.

Definition 4. A Banach lattice X is said to have: the property (P ) if there

exists a positive contractive projection in X ′′ onto X [30, p. 47]; the Levi property if

0 6 xα ↑ and ‖xα‖ 6 1 imply that supα xα exists in X [1, Definition 7 (2)]; the Fatou

property if 0 6 xα ↑ x implies ‖xα‖ ↑ ‖x‖ [1, Definition 7 (3)]. A Banach lattice with

the Levi (Fatou) property is also called order semicontinuous (resp. monotonically

complete) [30].

A Dedekind complete Banach lattice X with a separating order continuous dual

has property (P ) if and only if it has the Levi and Fatou properties [35, Proposi-

tions 7.6 and 7.10]. Cartwright [7, Corollary 3.8] proved that a Banach lattice is

injective if and only if it has the Cartwright property and the property (P ). Haydon

demonstrated that the property (P ) may be replaced with the intrinsic ‘complete-

ness’ property.

Theorem 4 (Haydon, [15]). A Banach lattice is injective if and only if it has

the Cartwright, Fatou, and Levi properties.

Definition 5. A band projection π in a Banach lattice X is called an M -pro-

jection if ‖x‖ = max{‖πx‖, ‖π⊥x‖} for all x ∈ X, where π⊥ := IX−π. The collection

of all M -projections forms a subalgebra M(X) of the Boolean algebra P(X). The

f -subalgebra of the center Z (X) generated by M(X) is called the M -center of X

and denoted by Zm(X).

Observe that M(X) is an order closed subalgebra of P(X) whenever X has the

Fatou and Levi properties. In this event the relations B 'M(X) and Λ(B) ' Zm(X)

are equivalent.

Theorem 5 (Haydon, [15]). An injective Banach lattice X is an AL-space

if and only if there is no M -projection in it other than zero and identity, i. e.,

M(X) = {0, IX} (if and only if its M -center is one-dimensional).

Remark 3. Haydon proved three representation theorems for injective Banach

lattices, see [15, Theorems 5C, 6H, and 7B]. These results may be also deduced from

our representation theorem (see Theorem 10 below).

5. Boolean-Valued Models

In 1963 P. Cohen discovered his method of ‘forcing’ and also proved the indepen-

dence of the Continuum Hypothesis. A comprehensive presentation of the Cohen

forcing method gave rise to the Boolean-valued models of set theory, which were

first introduced by D. Scott and R. Solovay (see Scott [36]) and P. Vopěnka [43].

A systematic account of the theory of Boolean-valued models can be found in [4, 42].

The term Boolean-valued analysis, coined by G. Takeuti (see [39, 40, 41]), signifies

the technique of studying properties of an arbitrary mathematical object by means of

comparison between its representations in two different set-theoretic models whose

construction utilizes principally distinct Boolean algebras.
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As these models, the classical Cantorian paradise in the shape of the von Neu-

mann universe V and a specially-trimmed Boolean-valued universe V(B) are usually

taken. Comparative analysis is carried out by means of some interplay between V

and V(B).

Boolean-valued analysis stems from the fact that each internal field of reals of

a Boolean-valued model descends into a universally complete vector lattice. This

remarkable fact was discovered by E. Gordon [12, 13]. Two important particular

cases were intensively studied by G. Takeuti [39], who observed that the vector

lattice of (equivalence classes of) measurable function and a commutative algebra of

(unbounded) self-adjoint operators in Hilbert space can be considered as instances

of Boolean-valued reals. A detailed presentation of Boolean-valued analysis can be

found in [23, 24], see also [19].

6. The Universe of Boolean-Valued Sets

Throughout the sequel B is a complete Boolean algebra with unit 1 and zero O.

Given an ordinal α, put

V(B)
α :=

{
x : x is a function, (∃ β)

(
β < α, dom(x) ⊂ V

(B)
β , Im(x) ⊂ B

)}
.

After this recursive definition the Boolean-valued universe V(B) or, in other words,

the class of B-sets is introduced by

V(B) :=
⋃
α∈On

V(B)
α ,

with On standing for the class of all ordinals.

In case of the two element Boolean algebra 2 := {O,1} this procedure yields a

version of the classical von Neumann universe V (cp. [24, Theorem 4.2.8]).

Let ϕ be an arbitrary formula of ZFC, Zermelo–Fraenkel set theory with choice.

The Boolean truth value [[ϕ]] ∈ B is introduced by induction on the complexity

of ϕ by naturally interpreting the propositional connectives and quantifiers in the

Boolean algebra B
(
for instance, [[ϕ1∨ϕ2]] := [[ϕ1]]∨ [[ϕ2]] and [[∀xϕ(x)]] =

∧
{[[ϕ(u)]] :

u ∈ V(B)}) and taking into consideration the way in which a formula is built up from

atomic formulas. The Boolean truth values of the atomic formulas x ∈ y and x = y(
with x, y assumed to be elements of V(B)) are defined by means of the following

recursion schema:

[[x ∈ y]] =
∨

t∈dom(y)

(
y(t) ∧ [[t = x]]

)
,

[[x = y]] =
∨

t∈dom(x)

(
x(t)⇒ [[t ∈ y]]

)
∧

∨
t∈dom(y)

(
y(t)⇒ [[t ∈ x]]

)
.

The sign ⇒ symbolizes the implication in B; i. e., (a⇒ b) := (a∗ ∨ b), where a∗ is as

usual the complement of a.
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We say that the statement ϕ(x1, . . . , xn) is valid or the elements x1, . . . , xn possess

the property ϕ inside V(B) if [[ϕ(x1, . . . , xn)]] = 1. In this event, we write also

V(B) � ϕ(x1, . . . , xn).

The universe V(B) with the Boolean truth value of a formula is a model of set

theory in the sense that the following statement is fulfilled:

Transfer Principle. For every theorem ϕ of ZFC, we have [[ϕ]] = 1 (also in ZFC);

i. e., ϕ is true inside the Boolean-valued universe V(B).

Maximum Principle. Let ϕ(x) be a formula of ZFC. Then (in ZFC) there is

a B-valued set x0 satisfying [[(∃x)ϕ(x)]] = [[ϕ(x0)]].

Corollary. If V(B) |= (∃x)ϕ(x), then V(B) |= ϕ(x0) for some x0 ∈ V(B).

7. Ascending and Descending

As was mentioned above, a smooth mathematical toolkit for revealing interplay

between the interpretations of one and the same fact in the two models V and V(B)

is needed. The relevant ascending-and-descending technique rests on the functors of

canonical embedding, descent, and ascent.

Standard name. Given X ∈ V, we denote by X∧ ∈ V(B) the standard name

of X. The standard name is an embedding of V into V(B). Moreover, the standard

name sends V onto V(2), i. e., V ' V(2) ⊂ V(B), where 2 := {O,1} ⊂ B.

A formula is restricted provided that each bound variable in it is restricted by

a bounded quantifier; i. e., a quantifier ranging over a particular set. The latter

means that each bound variable x is restricted by a quantifier of the form (∀x ∈ y)

or (∃x ∈ y).

Restricted Transfer Principle. Let ϕ(x1, . . . , xn) be a bounded formula

of ZFC. Then (in ZFC) for every collection x1, . . . , xn ∈ V we have

ϕ(x1, . . . , xn) ⇐⇒ V(B) |= ϕ(x∧1 , . . . , x
∧
n).

Descent. Given an arbitrary element X of the Boolean-valued universe V(B), we

define the descent X↓ of X as X↓ := {y ∈ V(B) : [[y ∈ x]] = 1}. The class X↓ is

a set, i. e., X↓ ∈ V for all X ∈ V(B). If [[X 6= ∅]] = 1 then X↓ is nonempty.

Suppose that X, Y, f ∈ V(B) are such that [[f : X → Y ]] = 1, i. e., f is a mapping

from X into Y inside V(B). Then f↓ is a unique mapping from X↓ into Y ↓ satisfying

[[f↓(x) = f(x)]] = 1 for all x ∈ X↓. The descent of a mapping is extensional :

[[x1 = x2]] 6 [[f(x1) = f(x2)]] (x1, x2 ∈ X↓).

Assume that P is an n-ary relation on X inside V(B); i. e., X,P ∈ V(B) and

[[P ⊂ Xn∧ ]] = 1 (n ∈ N). Then there exists an n-ary relation P ′ on X↓ such that

(x1, . . . , xn) ∈ P ′ ⇐⇒ [[(x1, . . . , xn)B ∈ P ]] = 1.

We denote the relation P ′ by the same symbol P↓ and call it the descent of P .
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Ascent. Let X ∈ V and X ⊂ V(B); i. e., let X be some set composed of B-valued

sets or, in other words, X ∈ P(V(B)). There exists a unique X↑ ∈ V(B) such that

[[y ∈ X↑]] =
∨
{[[x = y]] : x ∈ X} for all y ∈ V(B). The element X↑ is called the

ascent of X. Observe that the ascent extend the standard name in the sense that

Y ∧ is the ascent of {y∧ : y ∈ Y } whenever Y ∈ V.

Let X, Y ∈P(V(B)), and f : X → Y . There exists a unique function f↑ from X↑
to Y ↑ inside V(B) such that f↑(A↑) = f(A)↑ is valid for every subset A ⊂ X if and

only if f is extensional.

8. Boolean-Valued Reals

Recall the well-known assertion of ZFC: There exists a field of reals that is unique

up to isomorphism. Denote by R the field of reals (in the sense of V). Successively

applying the transfer and maximum principles, we find an element R ∈ V(B) for

which [[ R is a field of reals ]] = 1. Moreover, if an arbitrary R ′ ∈ V(B) satisfies

the condition [[ R ′ is a field of reals ]] = 1 then [[ the ordered fields R and R ′ are

isomorphic ]] = 1. In other words, there exists an internal field of reals R ∈ V(B)

which is unique up to isomorphism. We call R the internal reals in V(B).

Consider another well-known assertion of ZFC: If P is an Archimedean ordered

field then there is an isomorphic embedding h of the field P into R such that the im-

age h(P) is a subfield of R containing the subfield of rational numbers. In particular,

h(P) is dense in R.

Note also that ϕ(x), presenting the conjunction of the axioms of an Archimedean

ordered field x, is bounded; therefore, [[ϕ(R∧) ]] = 1, i. e., [[ R∧ is an Archimedean

ordered field ]] = 1. ‘Pulling’ the above assertion through the transfer principle, we

conclude that [[ R∧ is isomorphic to a dense subfield of R ]] = 1. We further assume

that R∧ is a dense subfield of R. It is easy to see that the elements 0∧ and 1∧ are

the zero and unity of R.

Look now at the descent R := R↓ of the algebraic structure R. In other words,

consider the descent of the underlying set of the structure R together with the

descended operations and order. For simplicity, we denote the operations and order

in R and R↓ by the same symbols +, · , and 6.

The fundamental result of Boolean-valued analysis is the Gordon Theorem which

describes an interplay between R, R, and R and reads as follows: Each universally

complete vector lattice is an interpretation of the reals in an appropriate Boolean-

valued model.

Theorem 6 (Gordon Theorem, [12]). Let R be a field of reals in V(B) and

R = R↓. Then the following assertions hold:

(1) The algebraic structure R (with the descended operations and order) is an

universally complete vector lattice.

(2) The internal field R ∈ V(B) can be chosen so that

[[ R∧ is a dense subfield of the field R ]] = 1.
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(3) There is a Boolean isomorphism χ from B onto P(R) such that

χ(b)x = χ(b)y ⇐⇒ b 6 [[ x = y ]],

χ(b)x 6 χ(b)y ⇐⇒ b 6 [[ x 6 y ]]

(x, y ∈ R; b ∈ B).

Let Λ ⊂ R = R↓ be the order ideal in R generated by 1∧ equipped with the

order-unit norm ‖ · ‖∞:

Λ:= {x ∈ R : (∃C ∈ B)− C1∧ 6 x 6 C1∧};
‖x‖∞ := inf{C > 0 : −C1∧ 6 x 6 C1∧} (x ∈ Λ).

Write Λ = Λ(B), since Λ is uniquely defined by B. Clearly, Λ is a Dedekind complete

AM -space with unit 1∧. By Krĕıns–Kakutani Representation Theorem Λ ' C(K)

with K being an extremally disconnected compact Hausdorff space.

Remark 4. The version of the Gordon Theorem for complexes is also true: Each

complex universally complete vector lattice is an interpretation of the complexes in

an appropriate Boolean-valued model.

9. Boolean-Valued Banach Lattices

What kind of category is produced by applying the descending procedure to the

category of Banach lattices in V(B)? The answer is given in terms of B-cyclicity.

Let (X , ‖ · ‖) be a Banach lattice in V(B). Define the map N : X ↓ → R := R↓
as the descent N(·) := (‖ · ‖)↓ of the norm ‖ · ‖. Then N is an R-valued norm.

Definition 6. The bounded descent X ⇓ of X is defined as the set

X ⇓ := {x ∈X ↓ : N(x) ∈ Λ}

equipped with the descended operations and considered the mixed norm:

|||x||| := ‖N(x)‖∞ (x ∈X ⇓).

Proposition. (X ⇓, |||·|||) is a Banach lattice for any internal Banach lattice

(X , ‖ · ‖).

Definition 7. Say that X is a Banach lattice with a Boolean algebra of band

projections B if there is a Boolean isomorphism ϕ : B→ P(X) and ϕ(B) is a complete

subalgebra in P(X). In this event B is identified with ϕ(B) and one write B ⊂ P(X).

Let B ⊂ P(X) and B ⊂ P(Y ). A lattice B-isometry is a lattice isometry T : X → Y

with an additional property b ◦ T = T ◦ b for all b ∈ B.

Definition 8. A partition of unity in B is a family (bξ)ξ∈Ξ ⊂ B such that∨
ξ∈Ξ bξ = 1 and bξ ∧ bη = O whenever ξ 6= η. The set of all partitions of unity

in B is denoted by Prt(B). Let (bξ)ξ∈Ξ ∈ B and (xξ)ξ∈Ξ ⊂ X. The element x ∈ X
is called a mixture of (xξ) by (bξ) and is denoted by x := mixξ∈Ξ(bξxξ), whenever
bξxξ = bξx for all ξ ∈ Ξ.
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Definition 9. A Banach lattice X is said to be B-cyclic if B ⊂ P(X) and the
closed unit ball BX of X is mix-complete, i. e., has the property:

(xξ) ⊂ BX , (bξ) ∈ Prt(B) =⇒ ∃ mixξ(bξxξ) ∈ BX .

Theorem 7. A bounded descent X ⇓ of a Banach lattice X from the model V(B)

is a B-cyclic Banach lattice. Conversely, if X is a B-cyclic Banach lattice, then in
the model V(B) there exists up to lattice isometry a unique Banach lattice X whose
bounded descent X ⇓ is lattice B-isometric to X. Moreover, B 'M(X) if and only
if [[there is no M -projection in X other than 0 and IX ]] = 1, i. e.,

B 'M(X) ⇐⇒ [[M(X ) = {0, IX }]] = 1.

Definition 10. The internal Banach lattice X in Theorem 7 is called the
Boolean-valued representation of X.

Remark 5. It follows from Theorem 7 that the descent of a category of Banach
lattices and positive operators inside V(B) is the category of B-cyclic Banach lattices
and positive B-linear operators, see [20]. A detailed presentation of the descent of
the category of Banach spaces and bounded linear operators see in [23] and [19].

10. Boolean-Valued AL-Spaces

Theorem 8. Suppose that X is a B-cyclic Banach lattice and X ∈ V(B) is its
Boolean-valued representation. Then the following assertions hold:

(1) X is injective ⇐⇒ [[X is injective ]] = 1.

(2) X is injective and B 'M(X)

⇐⇒ [[X is injective and M(X ) = {0, IX } ]] = 1.

Theorem 9 (Haydon, [15]). Let X is an injective Banach space. Then

X is an AL-space ⇐⇒ M(X) = {0, IX}.

Now, putting together Theorems 7, 8, and 9 we arrive at our main representation
theorem for injective Banach lattice. For further results see [20, 21, 22].

Theorem 10. A bounded descent X ⇓ of an AL-space X from V(B) is an
injective Banach lattice with B ' M(X ⇓). Conversely, if X is an injective Banach
lattice and B ' M(X), then there exist an AL-space X in V(B) whose bounded
descent is lattice B-isometric to X; in symbols, X 'B X ⇓.

Remark 6. Theorem 10 implies the transfer principles from AL-spaces to injec-
tive Banach spaces which can be stated as follows:

(1) Every injective Banach lattice embeds into an appropriate Boolean-valued
model, becoming an AL-space.

(2) Each theorem about the AL-space within Zermelo–Fraenkel set theory has its
counterpart for the original injective Banach lattice interpreted as a Boolean-valued
AL-space.

(3) Translation of theorems from AL-spaces to injective Banach lattices is carried
out by appropriate general operations and principles of Boolean-valued analysis.
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11. Direct Sums of Injective Banach Lattices

Let (Xα)α∈A be a family of injective Banach lattices. Neither
(∑⊕

γ∈ΓXα

))
l∞

,

nor
(∑⊕

γ∈ΓXα

))
l1

is an injective Banach lattice in general. Nevertheless, one can

construct the injective sum
∑

ins

α∈A Xα which is always an injective Banach lattice.
Denote by Prtσ := Prtσ(B) and Pfin(X) the set of all countable partitions of unity

in B and the collection of all finite subsets of X, respectively. Define B〈X0〉 by

B〈X0〉 :=
{
x ∈ X : x = mixξ(bξxξ), (xξ) ⊂ X0, (bξ) ∈ Prt(B)

}
.

The details concerning the following result see in [21].

Theorem 11. Let (Xα)α∈A be a family of injective Banach lattices. Assume that
there is a complete Boolean algebra B and a family (bα)α∈A in B with

∨
α∈A bα = 1

and M(Xα) ' Bα = [O, bα] for all α ∈ A. Then there exists a unique up to a lattice
B-isometry injective Banach lattice X such that the following hold:

(1) B 'M(X).

(2) For any α ∈ A there is a lattice Bα-isometry ια : Xα → X.

(3)
(
ια(Xα)

)
α∈A

is a family of pair-wise disjoint bands in X.

(4) B
〈⊕

α∈A ια(Xα)
〉

is norm dense in X.

(5) For any x = (xα)α∈A ∈ X we have

‖x‖ins = sup
θ∈Pfin(A)

inf
(πk)∈Prtσ

sup
k∈N

∑
α∈θ

‖πkxα‖.

Definition 11. The Banach lattice (X, ‖ · ‖ins) is called the injective sum of
injective Banach lattices. Denote

∑
ins

α∈A Xα := X.

12. Tensor Products of Injective Banach Lattices

If one of the Banach lattices X or Y is an AL-space then the projective tensor
product X⊗̂πY is a Banach lattice. If one of the Banach lattices X or Y is a
Dedekind complete AM -spaces with unit then the injective tensor product X⊗̌εY
is a Banach lattice. However, in general, X⊗̂πY and X⊗̌εY need not be Banach
lattices, see [5, § 9].

In [9] Fremlin introduced for every two Archimedean vector lattices X and Y

a new Archimedean vector lattice X ⊗ Y . The Fremlin projective tensor product
X⊗̂|π|Y of Banach lattices X and Y is the completion of X ⊗ Y with respect to the
positive projective norm ‖ · ‖|π|, see [10].

The Wittstock injective tensor product X⊗̌|ε|Y of Banach lattices X and Y is the
completion of X ⊗ Y with respect to the positive injective norm ‖ · ‖|ε|, [45].

Let X and Y be injective Banach lattices. No one of the four tensor products
X ⊗ε Y , X ⊗π Y , X⊗̌|ε|Y , X⊗̂|π|Y is in general an injective Banach lattice. But
there exists a ‘mixed’ positive injective-projective tensor product X ⊗ε|π| Y which is
always injective. Details concerning the following result can be found in [21].

Theorem 12. Let X1 and X2 be arbitrary injective Banach lattices. Then there
exist a unique up to isomorphism injective Banach lattice X1 ⊗̂ε|π|X2 and a lattice

bimorphism ⊗ : X1 ×X2 → X1 ⊗̂ε|π|X2 such that the following hold:
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(1) ⊗ induces an embedding φ of the Fremlin tensor product X1 ⊗ X2 into
X1 ⊗̂ε|π|X2.

(2) There is a Boolean isomorphism  from M(X1) ⊗̂M(X2) onto M(X1 ⊗̂ε|π|X2)

with (π1 ⊗ π2)(x1 ⊗ x2) = π1x1 ⊗ π2x2 for all πi ∈M(Xi) and xi ∈ Xi (i = 1, 2).
(3) ‖x1 ⊗ x2‖ε|π| = ‖x1‖ · ‖x2‖ for all x1 ∈ X1 and x2 ∈ X2.

(4) X1 ⊗X2 is B-dense in X1 ⊗̂ε|π|X2 with B = M(X1 ⊗̂ε|π|X2).

(5) X1 ⊗̂ε|π|X2 = X↓↑0 , where X0 comprises all finite sums
∑n

k=1 πkφ(uk) with

πk ∈M(X1 ⊗̂ε|π|X2) and uk ∈ X1 ⊗X2 (k = 1, . . . , n ∈ N).

(6) For any x ∈ X1 ⊗X2 we have the representation

‖x‖inj = inf

{
sup
k∈N

n∑
i=1

‖πkui,k‖ · ‖ρkvi,k‖
}

where infimum is taken over all (πk) ∈ Prtσ(B1), (ρk) ∈ Prtσ(B2), and 0 6 ui,k ∈ X1,
0 6 vi,k ∈ X2 (i 6 n) with |x| 6

∑n
i=1 ui,k ⊗ vi,k (k ∈ N).

13. Representation of AL-Spaces

For every cardinal γ, there exists a canonical measure on the unit cube [0, 1]γ that
is the γth power of Lebesgue’s measure on [0, 1]. The associated measure algebra
and the corresponding Banach lattice of integrable functions will be denoted by Iγ
and L1([0, 1]γ), respectively.

The famous Maharam theorem tells us that the measure algebras are the ‘building
blocks’ for every Maharam algebra (≡ measure algebra of the mesure space with the
direct sum property). More precisely, every atomless nonzero (finite) Maharam alge-
bra is isomorphic to a direct sum of concrete measure algebras Iγ, and it is uniquely
determined by a family of cardinals, see [11, 321A] and [37, 17.5.3]. Transferring the
structure theory of Maharam algebras, yields an important representation theorem
for AL-spaces (Theorem 14 below, see [37, 26.4.7].

Definition 12. The density character of a subset S of a topological space is the
smallest cardinal γ such that S contains a dense subset of cardinality γ.

Definition 13. A Banach lattice X is said to be γ-homogeneous if X is non-
atomic and whenever x, y ∈ X with x 6 y and x 6= y the density character of the
order interval [x, y] is γ.

Theorem 13. Let X be a γ-homogeneous AL-space. Then there exists a cardi-
nal δ such that

X ' δL1([0, 1]γ),

where δY denotes l1-direct sum of δ many copies of Y .

Every non-atomic Banach lattice can be decomposed into a direct sum of homo-
geneous Banach lattices and thus the Banach lattices L1([0, 1]γ) are the ‘building
blocks’ for all AL-spaces.

Corollary. For any nonatomic AL-space X there exist a family of cardinals
(δγ)γ∈Γ with Γ being a set of cardinals such that the lattice isometry holds:

X '
(∑⊕

γ∈Γ
δγL1

(
[0, 1]γ

))
l1
.
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Theorem 14. Let X be an AL-space. Then there exists a unique well-ordered
family (mσ)06σ<τ of cardinals with τ an ordinal such that {σ : mσ 6= 0} is cofinal
in τ , each mσ is either equal to 0, or 1, or is uncountable, and

X ' l1(γ)⊕
∑

06σ<τ

⊕
mσL1

(
[0, 1]ωσ

)
,

where ' denotes lattice isometry, ⊕ and
∑⊕

denote l1-joins, and mY stands for the
l1-join of m copies of Y .

14. Representation of Injective Banach Lattices

Let Λγ be a Dedekind complete AM -space with unit and Lγ be an AL-space.
Then Mγ ⊗̂ε|π| Lγ is an injective Banach lattice by Theorem 12. Moreover, in view

of Theorem 11,
∑

ins

γ∈ΓMγ ⊗̂ε|π| Lγ is also an injective Banach lattice. Actually, every
injective Banach lattice have a similar representation, so that Dedekind complete
AM -spaces with unit and AL-spaces are the ‘building blocks’ for any injective Banach
lattice. This follows from Theorems 10 and 13.

Definition 14. A subset X0 ⊂ X is said to be B-dense in X whenever B〈X0〉
is norm dense in X.

Definition 15. The B-density character of a subset S of a B-cyclic Banach lat-
tice is the smallest cardinal γ such that S contains a B-dense subset of cardinality γ.

Definition 16. A B-cyclic Banach lattice X is said to be (B, γ)-homogeneous
if X has no B-atom (see [20, Definition 8.1]) and whenever x, y ∈ X with x 6 y
and x 6= y the B-density character of the order interval [x, y] is γ, while X is B-
homogeneous, whenever X is (B, γ)-homogeneous for some γ.

Theorem 15. Let X be a B-homogeneous injective Banach lattice with B =
M(X). Then there are the sets of cardinals Γ and ∆ a partition of unity (πγδ)(γ,δ)∈Γ×∆

in B such that

X 'B
∑ins

(γ,δ)∈Γ×∆
Λγδ ⊗̂ε|π| δL1([0, 1]γ).

Remark 7. Neither the decomposition in Theorem 13 nor a decomposition of
an injective Banach lattice into B-homogeneous bands is unique in general, cf. [19,
Ch. 8]. The reason for this is the so-called cardinal collapsing phenomena: it is
possible for two infinite cardinals κ < λ to satisfy V(B) |= |κ∧| = |λ∧|. In this event
we say that λ has been collapsed to κ in V(B), see [4, Ch. 5].

Remark 8. It should be emphasized that, according to Theorem 10, our repre-
sentation theorem 15 is just an interpretation of Theorem 13 in the Boolean-valued
model V(B) with B ' M(X). This should be compared with the representation of
Kaplansky–Hilbert modules and AW ∗-algebras of [31, 32, 33], see also [19].

Corollary. If B is associated with the measure algebra (Ω,Σ, µ) then there
exists a family (Ωγδ)(γ,δ)∈Γ×∆ of pair-wise disjoint measurable sets Ωγδ ⊂ Ω such
that µ(Ωγδ) > 0 for all γ and δ, Ω =

⋃
γδ Ωγδ, and

X 'B
∑ins

(γ,δ)∈Γ×∆
L∞
(
Ωγδ, δL1([0, 1]γ)

)
.
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Remark 9. The concept of B-atomic Banach lattice was introduced in [21]. It
was proved that if X is a B-atomic injective Banach lattice with B = M(X), then
there is a partition of unity (πγ)γ∈Γ, with Γ being a set of cardinals, such the following
lattice B-isometry holds:

X 'B

(∑⊕

γ∈Γ
Λγ⊗̂ε|π|l1(γ)

))
l∞
,

where Λγ := πγΛ and Λ = Λ(B).
Now, every injective Banach lattice is decomposable into an injective sum of a B-

atomic band and a family of Bα-homogeneous bands. Therefore Theorem 15 and [21,
Theorem 8.11] enables us to obtain a complete description of an arbitrary injective
Banach lattice. To do this we have to interpret Theorem 14 in V(B) making use of
Theorem 10.

15. Open Problems

A real Banach lattice X is said to be λ-injective, if for every Banach lattice Y ,
closed sublattice Y0 ⊂ Y , and positive T0 : Y0 → X there exists a positive extension
T : Y → X with ‖T‖ 6 λ‖T0‖. It was proved in [26] that every finite-dimensional λ-
injective Banach lattice is lattice isomorphic to

(∑⊕
j6k l1(nj)

)
l∞

, while it was shown

in [29] that every order continuous λ-injective Banach lattice is lattice isomorphic
to L1(µ) space. But the general question, as far as I know, is still open:

Problem 1: Is every λ-injective Banach lattice order isomorphic to 1-injective
Banach lattice?

One of the intriguing problems, dating from the work [14], is the classification of
the Banach space whose duals are isometric to an AL-space, see also [27]. I believe
that the injective version of this problem deserves an independent study.

Problem 2: Classify and characterize the Banach spaces whose duals are injec-
tive Banach lattices.

As is seen from Theorem 10 an injective Banach lattice X has a mixed LM -struc-
ture. Thus, the dual X ′ should have, in a sense, an ML-structure. Hence a natural
question arises:

Problem 3: What kind of duality theory is there for injective Banach lattices?

Every Banach space has an injective envelope, see [8, 18]. Following [8] we can
give the definition: An injective envelope of a Banach lattice X is a pair (εX, ι) with
εX an injective Banach lattice and ι : X → εX a lattice isometry such that the only
sublattice of εX that is injective and contains ι(X) is εX itself, cf. [8].

Problem 4: Does every Banach lattice have an injective envelope?
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