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Part I. Envelopes and Inequalities
in Vector Lattices

Continuous functional calculus on uniformly complete vector lattices is con-
structed and the abstract form of envelope representation method in vector lattices is
developed. Some general convexity inequalities involving operators in vector lattices
are proved. A transfer principle from inequalities with inner products to inequalities
containing positive semidefinite symmetric bilinear operators with values in a vector
lattices is also presented.

1. Introduction

The expression ϕ̂(x1, . . . , xN) can naturally be defined for elements x1, . . . , xN

of a uniformly complete vector lattice whenever a positively homogeneous function
ϕ is defined and continuous on a conic subset of RN . Such extension of the ho-
mogeneous functional calculus (see [21, 60, 89, 92]) makes it possible to translate
the Minkowski duality to the vector lattice setting and to obtain envelope repre-
sentations [70]. As was shown in [79] the homogeneous functional calculus can be
extended further so as to make it the continuous functional calculus and to produce
some new envelope representation results in vector lattices. This machinery, often
called quasilinearization (see [4, 7, 99]), yields the validity of the classical inequal-
ities in every uniformly complete vector lattice [69, 70]. The aim of this part to
give a brief overview of the method and some general inequalities in vector lattices
recently obtained in [69, 70, 73, 74, 76, 79].

The unexplained terms of use below can be found in [1, 64, 78, 98]. All vector
lattices in this paper are assumed real and Archimedean.

2. Homogeneous Functional Calculus

Let E be a uniformly complete vector lattice and let a finite collection
x1, . . . , xN ∈ E be given. Assume that 〈x1, . . . , xN〉 stands for the vector sublattice
of E generated by {x1, . . . , xN} and H(L) denotes the set of all R-valued lattice
homomorphisms on a vector lattice L. Put

[x1, . . . , xN ] :=
{
(ω(x1), . . . , ω(xN)) ∈ RN : ω ∈ H(〈x1, . . . , xN〉)

}
.

Then [x1, . . . , xN ] is a closed conic set in RN uniquely determined by each point
separating subset of H(〈x1, . . . , xN〉). A set K ⊂ RN is conic if λK ⊂ K for all
λ>0.

Let H (K) denote the vector lattice of all positively homogeneous continuous
functions ϕ : K → R. In what follows dtk will stand for the kth coordinate function
on RN , i. e. dtk : (t1, . . . , tN) 7→ tk.

Definition 2.1. Let [x1, . . . , xN ] ⊂ K and ϕ ∈ H (K). Say that ϕ̂(x1, . . . , xN)
exists or is well defined in E and write y = ϕ̂(x1, . . . , xN) whenever there is y ∈
E such that ω(y) = ϕ(ω(x1), . . . , ω(xN)) for all ω ∈ H(〈x1, . . . , xN , y〉); cf. [21,
Definition 3.1].
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Theorem 2.2. Let E be a uniformly complete vector lattice and x1, . . . , xN ∈ E.
Assume that K ⊂ RN is a conic set and [x1, . . . , xN ] ⊂ K. Then ϕ̂(x1, . . . , xN) exists
for every ϕ ∈ H (K) and ϕ 7→ ϕ̂(x1, . . . , xN) is a unique lattice homomorphism from

H (K) into E with d̂tj(x1, . . . , xN) = xj for j := 1, . . . , N .

C See [70, Theorem 3.5] and [69, Theorem 2.3]. B
Now, we will turn to an extended version of the functional calculus [21, The-

orem 4.12] on a unital f -algebra. Let D be a closed subset of RN . Denote by
B(D) the f -algebra of continuous functions on D with polynomial growth; i.e.,
ϕ ∈ B(D) if and only if ϕ ∈ C(D) and there are n ∈ N and M ∈ R+ satisfying
|ϕ(t)| 6 M(1+ w(t))n (t ∈ D), with w(t) := |t1|+ . . . + |tN |.

Lemma 2.3. Let D be a closed subset of RN . To each ϕ ∈ B(D) there is
ϕ̄ ∈ B(RN) such that ϕ̄|D = ϕ.

C If ϕ ∈ B(D) and |ϕ| 6 M(1 + w)n, then M−1ϕ(1 + w)−n : D → [−1, 1] is
a continuous function, and by the Tietze–Urysohn theorem it admits some contun-
uous extension ϕ′ : RN → [−1, 1]. Clearly, ϕ := Mϕ′(1 + w)n belongs to B(RN)
and ϕ̄|D = ϕ. B

Definition 2.4. Consider an f -algebra E. Given an f -subalgebra A ⊂ E and
a finite tuple x = (x1, . . . , xN) ∈ EN , denote by 〈〈 x 〉〉 := 〈〈x1, . . . , xN〉〉 and Hm(A)
the f -subalgebra of E generated by {x1, . . . , xN} and the set of all nonzero R-va-
lued multiplicative lattice homomorphisms on A, respectively. Denote by [ x ]m :=
[ x1, . . . , xN ]m the closure of {(ω(x1), . . . , ω(xN)) : ω ∈ Hm(〈〈 x 〉〉)} in RN .

Definition 2.5. Let E be a uniformly complete f -algebra with unit element 1.
Assume that x := (x1, . . . , xN) ∈ EN satisfies the condition [x1, . . . , xN ]m ⊂ D
and take a continuous function ϕ : D → R. Say that the element ϕ̂(x1, . . . , xN)
exists or is well-defined in E provided that there is y ∈ E satisfying ω(y) =
ϕ(ω(x1), . . . , ω(xN)) for all ω ∈ Hm(〈〈x1, . . . , xN , y,1〉〉), cp. [21, Definition 4.2].
This is written down as y = x̂(ϕ) = ϕ̂(x1, . . . , xN).

According to [21, Corollary 2.5] Hm(〈〈x1, . . . , xN , y,1〉〉) separates the points of
〈〈x1, . . . , xN , y,1〉〉. Therefore, there is at most one y ∈ E enjoying the above
condition. Moreover, if H is a point separating subset of Hm(〈〈x1, . . . , xN , y,1〉〉)
and ω(y) = ϕ(ω(x1), . . . , ω(xN)) for all ω ∈ H, then y = ϕ̂(x1, . . . , xN); cp. [21,
Lemma 4.3]. The following result should be compared with [21, Theorem 4.12].

Theorem 2.6. Assume that E is a uniformly complete f -algebra with unit 1,
x := (x1, . . . , xN) ∈ EN , and D ⊂ RN is a subset of RN containing [ x ]m. Then
x̂(ϕ) := ϕ̂(x1, . . . , xN) exists for every ϕ ∈ B(D), and the mapping

x̂ : ϕ 7→ x̂(ϕ) = ϕ̂(x1, . . . , xN)
(
ϕ ∈ B(D)

)

is the unique multiplicative lattice homomorphism from B(D) to E such that

x̂(1D) = 1 and d̂tj(x1, . . . , xN) = xj for all j := 1, . . . , N .

C Since [x]m is closed and [x]m ⊂ D, we may assume without loss of generality
that D is closed. If D = RN , then the claim is established in [21, Theorem 4.12].
Denote by h the corresponding multiplicative lattice homomorphism from B(RN)
to E and let % stands for the restriction operator ϕ 7→ ϕ|D from B(RN) to B(D). It
is easy that ker(%) = ker(h). Consequently, there is a linear operator x̂ : B(D) → E,
satisfying x̂ ◦ % = h [85, Theorem 2.3.8]. This x̂ is clearly a multiplicative lattice
homomorphism. Also % is surjective by Lemma 2.3, which implies the unicity of x̂. B



Part I. Envelopes and Inequalities in Vector Lattices 5

3. Continuous Functional Calculus

A continuous functional calculus in a uniformly complete vector lattice can be
constructed making use of Hörmander transform of convex functions, see [79].

Given a nonempty D ⊂ RN , let Dh stand for the conic hull of the set {1} × D
in R×RN ; i. e., Dh := cone({1}×D). Clearly, Dh := {(λ, t) ∈ R×RN : λ > 0, t ∈
λD}. Take ϕ : D → R and define ϕh(λ, t) := λϕ(t/λ) ((λ, t) ∈ Dh). Obviously, Dh

is a conic subset of RN+1, while ϕh is a positively homogeneous function from Dh

to R. The function ϕh (as well as the set Dh) is often referred to as the Hörmander
transform of ϕ (respectively, D). More details concerning the Hörmander transform
as well as the following easy fact can be found in [86] and [110].

Proposition 3.1. The Hörmander transform ϕ ∈ C(D) 7→ ϕh ∈ H (Dh) is a
lattice and linear isomorphism of the vector lattices C(D) and H (Dh). In case D
is a convex set, ϕh is a sublinear (superlinear) function if and only if ϕ is a convex
(concave) function.

Definition 3.2. Take x0, x1, . . . , xN ∈E. Write (x1, . . . , xN)≺x0 provided that
x0 6= 0 and ε(|x1| + · · · + |xN |) 6 x0 for some ε > 0. If (x1, . . . , xN) ≺ x0, then
x0 is a strong order unit in 〈x0, x1, . . . , xN〉. Hence, ω(x0) 6= 0 for each nonzero
ω ∈ H(x0, x1, . . . , xN). By definition we put

[(x1, . . . , xN)/x0] :=

{(
ω(x1)

ω(x0)
, . . . ,

ω(xN)

ω(x0)

)
∈ RN :

0 6= ω ∈ H(x0, x1, . . . , xN)

}
.

Clearly, [(x1, . . . , xN)/x0] ⊂ D if and only if [x0, x1, . . . , xN ] ⊂ Dh. It is also easy that
[(x1, . . . , xN)/x0] is a compact subset of RN . Moreover, if L is a vector sublattice of E
whith x0, x1, . . . , xN ∈ L and H(L) separates the points of L, then [(x1, . . . , xN)/x0]
is the inclusion least closed set that includes

{
(ω(x1)/ω(x0), . . . , ω(xN)/ω(x0)) ∈

RN : 0 6= ω ∈ H(L)
}
.

Definition 3.3. Let some tuple x0, x1, . . . , xN ∈E be fixed. Consider ϕ∈C(D),
with D⊂RN , and suppose that [(x1, . . . , xN)/x0]⊂D. Put by definition

y = x0ϕ̂(x1/x0, . . . , xN/x0) ⇐⇒ y = ϕ̂h(x0, x1, . . . , xN).

Given y ∈ E, we have y = x0ϕ̂(x1/x0, . . . , xN/x0) if and only if

ω(y) = ω(x0)ϕ
(
ω(x1)/ω(x0), . . . , ω(xN)/ω(x0)

)

for all ω ∈ H(〈x0, x1, . . . , xN , y〉), see Definition 2.1. It is straightforward that
x0ϕ̂(x1/x0, . . . , xN/x0) = ϕ̂(x1, . . . , xN) whenever ϕ is positively homogeneous, and
thus the Definitions 2.1 and 3.3 are in agrement.

Theorem 3.4. Let E be a uniformly complete vector lattice, x0, x1, . . . , xN ∈ E
and x=(x1, . . . , xN). Assume that (x1, . . . , xN)≺x0 and [(x1, . . . , xN)/x0]⊂D⊂RN .
Then x0ϕ̂(x1/x0, . . . , xN/x0) exists for every ϕ ∈ C(D) and the mapping

(x/x0)̂ : ϕ 7→ x0ϕ̂(x1/x0, . . . , xN/x0)
(
ϕ ∈ C(D)

)

is the unique lattice homomorphism from C(D) to E satisfying (x/x0) (̂1D) = x0

and (x/x0) (̂dtj) = xj for all j := 1, . . . , N . Moreover, (x/x0)̂ (C(D)) coincides with
the x0-closure of the lattice 〈x0, x1, . . . , xN〉.
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Theorem 3.5. Take a finite tuple x1, . . . , xN of members of a uniformly com-
plete f -algebra E with unit 1. If D ⊂ RN , ϕ ∈ B(D), and for some positive
invertible x0 ∈ E we have [(x1, . . . , xN)/x0] ⊂ D and (x1, . . . , xN) ≺ x0 then
[x1x

−1
0 , . . . , xNx−1

0 ]m ⊂ D and

x0ϕ̂(x1x
−1
0 , . . . , xNx−1

0 ) = ϕ̂h(x0, x1, . . . , xN).

Remark 3.6. Theorem 3.5 says that the continuous functional calculus in uni-
formly complete vector lattices which is introduced in Definition 3.3 agrees with
that in uniformly complete unital f -algebras which is given in Definition 2.5.

We need a slightly improved version of continuous functional calculus on uni-
formly complete f -algebras constructed in [21, Theorem 5.2].

Denote by B(RN
+ ) the f -algebra of continuous functions on RN

+ with polynomial
growth; i. e., ϕ ∈ B(RN

+ ) if and only if ϕ ∈ C(RN
+ ) and there are n ∈ N and

M ∈ R+ satisfying |ϕ(t)| 6 M(1 + w(t))n (t ∈ RN
+ ), where t := (t1, . . . , tN),

w(t) := |t1| + . . . + |tN | and 1 is the function identically equal to 1 on RN
+ . Denote

by B0(RN
+ ) the set of all functions in B(RN

+ ) vanishing at zero. Let A (RN
+ ) stands

for the set of all ϕ ∈ B(RN
+ ) such that limα↓0 α−1ϕ(αt) exists uniformly on bounded

subsets of RN
+ . Evidently, A (RN

+ ) ⊂ B0(RN
+ ). Finally, let H (RN

+ ) denotes the set
of all continuous positively homogeneous functions on RN

+ .
Consider an f -algebra E. Denote by Hm(E) the subset of H(E) consisting of

multiplicative functionals. We say that ω ∈ H(E) is singular if ω(xy) = 0 for all
x, y ∈ E. Let Hs(E) denotes the set of singular members of H(E). Given a finite
tuple x = (x1, . . . , xN) ∈ EN , denote by 〈〈x 〉〉 := 〈〈x1, . . . , xN〉〉 the f -subalgebra
of E generated by {x1, . . . , xN}.

Definition 3.7. Let E be a uniformly complete f -algebra and x1, . . . , xN ∈ E+.
Take a continuous function ϕ : RN

+ → R. Say that the element ϕ̂(x1, . . . , xN) exists
or is well-defined in E provided that there is y ∈ E satisfying

ω(y) = ϕ(ω(x1), . . . , ω(xN))
(
ω ∈ Hm(〈〈x1, . . . , xN , y〉〉),

ω(y) = ϕ1(ω(x1), . . . , ω(xN))
(
ω ∈ Hs(〈〈x1, . . . , xN , y〉〉), (1)

cp. [21, Remark 5.3 (ii)]. This is written down as y = ϕ̂(x1, . . . , xN).

Theorem 3.8. Assume that E is a uniformly complete f -algebra and
x1, . . . , xN ∈E+, and x := (x1, . . . , xN). Then x̂(ϕ) := ϕ̂(x1, . . . , xN) exists for every
ϕ ∈ A (RN

+ ), and the mapping x̂ : ϕ 7→ x̂(ϕ) = ϕ̂(x1, . . . , xN) is the unique multi-

plicative lattice homomorphism from A (RN
+ ) to E such that d̂tj(x1, . . . , xN) = xj

for all j := 1, . . . , N . Moreover, x̂(A (RN
+ )) = 〈〈x1, . . . , xN〉〉. (As in [21] A denotes

the A-closure of A in E.)

4. Envelope Representations

Definition 4.1. Given φ : RN → R ∪ {±∞}, define the up-conjugate φ∗ and
the down-conjugate φ∗ as follows:

φ∗(t) := sup{〈s, t〉 − φ(s) : s ∈ RN},
φ∗(t) := inf{〈s, t〉 − φ(s) : s ∈ RN}.

Also, put φ∗∗ := (φ∗)∗ and φ∗∗ := (φ∗)∗. Note that φ∗∗ 6 φ 6 φ∗∗.
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The Fenchel–Moreau duality theorem assets that φ∗∗ = φ if and only if φ is
convex and lower semicontinuous, while φ∗∗ = φ if and only if φ is concave and
upper semicontinuous); cp. [109]. Denote by C∨(RN , D) and C∧(RN , D) the set of
all lower semicontinuous convex fucntions ϕ : RN → R∪{+∞} and the set of upper
semicontinuous concave functions ψ : RN → R ∪ {−∞} each of which is finite and
continuous on D ⊂ RN . Let B∨(RN , D) and B∧(RN , D) stand for the subsets of
C∨(RN , D) and C∧(RN , D) comprising the functions of polynomial growth on D.

Remark 4.2. If ϕ∈C∨(RN , D) and ϕh designates the closure of ϕh (see [109, § 7]),
then ϕh ∈ H∨(RN , D); cp. [86, Proposition 1.4]. Furthermore, ϕ̂h(x1, . . . , xN) =

ϕ̂h(x1, . . . , xN) provided that [x1, . . . , xN ] ⊂ D since ϕh and ϕh coincide on Dh.

Theorem 4.3. Let E be a uniformly complete vector lattice, while
x0, x1, . . . , xN ∈E and x := (x1, . . . , xN) ≺ x0. If ϕ ∈ C∨(RN ; D), ψ ∈ C∧(RN ; D),
and [ x/x0 ] ⊂ D then

x0ϕ̂(x/x0) = sup
λ∈dom(ϕ∗)

{ 〈λ, x 〉 − ϕ∗(λ)x0

}
,

x0ψ̂(x/x0) = inf
λ∈dom(ϕ∗)

{ 〈λ, x 〉 − ϕ∗(λ)x0

}
.

Moreover, x0ϕ̂(x/x0)
(
x0ψ̂(x/x0)

)
is the uniform limit of an increasing (decreasing)

sequence of finite suprema (infima) of linear combinations −ϕ∗(λ)x0 +
∑N

i=1 λixi,
with λ= (λ1, . . . λN) ∈ dom(ϕ∗) (λ ∈ dom(ϕ∗)).

Theorem 4.5. Assume that E is a uniformely complete f -algebra with unit 1,
while x1, . . . , xN ∈ E and x := (x1, . . . , xN). If ϕ ∈ B∨(RN ; D), ψ ∈ B∧(RN ; D) and
[ x ]m ⊂ D, then

x̂(ϕ) = sup
λ∈dom(ϕ∗)

{ 〈λ, x 〉 − ϕ∗(λ)1
}
,

x̂(ψ) = inf
λ∈dom(ϕ∗)

{ 〈λ, x 〉 − ϕ∗(λ)1
}
.

Moreover, ϕ̂(x1, . . . , xN)
(
ψ̂(x1, . . . , xN)

)
is the order limit of an increasing (decreas-

ing) sequence of finite suprema (infima) of linear combinations
∑N

i=1 λixi − ϕ∗(λ)1
with λ= (λ1, . . . λN) ∈ dom(ϕ∗) ((λ ∈ dom(ϕ∗)).

5. Convexity Inequalities

In this section we consider the abstractions of inequalities of Jensen, Hölder, and
Minkowski types obtained in [69, Theorems 5.2, 5.5, 5.6].

Definition 5.1. Let E and F be vector lattices. An operator f : E → F∪{+∞}
is said to be sublinear if f(0) = 0, f(λx) = λf(x), and f(x + y) 6 f(x) + f(y) for
all 0 6 λ ∈ R and x, y ∈ E. An operator g : E → F ∪{−∞} is superlinear provided
that −g is sublinear. Put dom(f) := {x ∈ E : f(x) < +∞} and dom(g) := {x ∈ E :
g(x) > −∞}. We say that f is increasing on dom(f) if x > y implies f(x) > f(y)
for x, y ∈ dom(f). For more details concerning sublinear operators, see [78].

Given a convex cone K ⊂ RN , denote by Hg(RN, K) (Hf(RN, K)) the set of
all sublinear (superlinear) functions φ : RN → R ∪ {+∞} (R ∪ {−∞}) with the
properties: a) φ is lower semicontinuous (upper semicontinuous), b) φ is continuous
on K ⊂ dom(φ), c) φ is increasing on dom(φ) with respect to RN

+ , d) RN
+−dom(φ) =

dom(φ)− RN
+ .
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Theorem 5.2. Let E and F be relatively uniformly complete vector lattices,
f : E → F ∪ {+∞} an increasing sublinear operator, and g : E → F ∪ {−∞} an
increasing superlinear operator. Assume that ϕ ∈ Hg(RN, K) and ψ ∈ Hf(RN, K).
If x1, . . . , xN ∈ dom(f) ∩ dom(g) and [x1, . . . , xN ] ⊂ K, [f(x1), . . . , f(xN)] ⊂ K

[g(x1), . . . , g(xN)] ⊂ K then ϕ̂(x1, . . . , xN) ∈ dom(g), ψ̂(x1, . . . , xN) ∈ dom(f) and

f
(
ψ̂(x1, . . . , xN)

)
6 ψ̂

(
f(x1), . . . , f(xN)

)
,

g
(
ϕ̂(x1, . . . , xN)

)
> ϕ̂

(
g(x1), . . . , g(xN)

)
.

Remark 5.3. Let H∨(RN , K) and H∧(RN , K) stand respectively for the set of
lower semicontinuous convex functions ϕ : RN → R ∪ {+∞} and the set of upper
semicontinuous concave functions ψ : RN → R ∪ {−∞} both finite and continuous
on K. The inequalities in 5.2 remain valid if ϕ ∈ H∨(RN, K), ψ ∈ H∧(RN, K), and
f, g : E → F are positive linear operators. Moreover, in this case we may assume
that E is a linear subspace of a uniformly complete vector lattice G provided that

ϕ̂(x1, . . . , xN), ψ̂(x1, . . . , xN) ∈ E and F is Dedekind complete. Indeed, by The
Kantorovich Extension Theorem [1, Theorem 1.32] f has a positive linear exten-
sion S to the order ideal G0 generated by E in G, and hence it suffice to apply the
above remark to S and G0. For a fixed tuple (x1, . . . , xN) we write xi À 0 whenever
xi Â (x1, . . . , xN).

Corollary 5.4. Let E and F be relatively uniformly complete vector lattices and
let f : E → F ∪ {+∞} be an increasing sublinear mapping with dom(f) = E+.
Then for x1, . . . , xN ∈ E and 0 6 α1, . . . , αN ∈ R, with α1 + . . . + αN = 1 we have

f

( N∏
i=1

|xi|αi

)
6

N∏
i=1

f(|xi|)αi .

The reverse inequality holds provided that f : E → F{−∞} is superlinear, α1 +
. . . + αN = 1, (−1)k(1 − α1 − . . . − αk) α1 · . . . · αk > 0 (k := 1, . . . , N − 1), and
|xi| À 0, f(|xi|) À 0 for all i with αi < 0.

Corollary 5.5. Let E and F be relatively uniformly complete vector lattices,
f : E → F ∪ {+∞} be an increasing sublinear mapping with dom(f) = E+, and
x1, . . . , xN ∈ E. If either and 0 < α 6 1 or α < 0, then

f

(( N∑
i=1

|xi|α
)1/α)

6
( N∑

i=1

f(|xi|)α

)1/α

.

The reverse inequality holds if f : E → F ∪ {−∞} is increasing superlinear and
α > 1.

Remark 5.6. In the special case of vector lattices of measurable functions the
first inequality in Theorem 5.2 was established by Haase [47, Proposition 1.1]. Sim-
ilar results see in Bourbaki [16, Proposition I.1], Malygranda [97, Lemma 1], Mitri-
nović, Pečarić, Fink [99, p. 192]. Various classical and recent inequalities are related
to Jensen’s, Hölder’s, and Minkowski’s inequality (see [4, 49, 99, 100, 113]). Some of
them can naturally be transferred into the environment of vector lattice by means of
envelope representation (= quazilinearization) method, see [69]. For a Hölder type
inequality involving positive linear operator between function lattices see Krengel
[59, Lemma 7.4], Krĕın, Petunin, and Semënov [58, pp. 61, 327], Maligranda [97,
Remark 1], M. Haase [47, Remark 1.2 (5)]; see also Boulabiar [12] for Hölder type
inequality involving positive operator between uniformly complete unital f -algebras.
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6. Generalized Jessen Type Inequalities

In this section we present two results from [79]. Denote by C∨(RN , D) and
C∧(RN , D) the set of all lower semicontinuous convex fucntions ϕ : RN → R∪{+∞}
and the set of upper semicontinuous concave functions ψ : RN → R∪{−∞} each of
which is finite and continuous on D ⊂ RN . Let B∨(RN , D) and B∧(RN , D) stand
for the subsets of C∨(RN , D) and C∧(RN , D) comprising the functions of polynomial
growth on D.

Theorem 6.1. Let E and F be uniformly complete vector lattices, and let
S : E → F be a positive operator. Assume that S(x0) 6= 0, ϕ ∈ C∨(RN, D)
and ψ ∈ C∧(RN, D) for some closed convex set D ⊂ RN . If a finite tuple
x0, x1, . . . , xN ∈ E is such that (x1, . . . , xN) ≺ x0, [(x1, . . . , xN)/x0] ⊂ D, and
[(S(x1), . . . , S(xN))/S(x0)] ⊂ D, then

S
(
x0ψ̂(x1/x0, . . . , xN/x0)

)
6

6 S(x0)ψ̂
(
S(x1)/S(x0), . . . , S(xN)/S(x0)

)
,

S
(
x0ϕ̂(x1/x0, . . . , xN/x0)

)
>

> S(x0)ϕ̂
(
S(x1)/S(x0), . . . , S(xN)/S(x0)

)
.

Theorem 6.2. Let E and F be uniformly complete vector lattices, x :=
(x1, . . . , xN) ∈ EN , and let S : E → F be a positive linear operator. Assume
that ϕ ∈ B∨(RN, D) and ψ ∈ B∧(RN, D) for some closed convex set D ⊂ RN . The
following are valid:

(1) If E is an f -algebra with units 1, [ x ]m ⊂ D, (S(x1), . . . , S(xN)) ≺ S(1), and
[(S(x1), . . . , S(xN))/S(1)] ⊂ D, then

S
(
ψ̂(x1, . . . , xN)

)
6 S(1)ψ̂

(
S(x1)/S(1), . . . , S(xN)/S(1)

)
,

S
(
ϕ̂(x1, . . . , xN)

)
> S(1)ϕ̂

(
S(x1)/S(1), . . . , S(xN)/S(1)

)
;

(2) If F is an f -algebra with unit 1̂, [S(x1), . . . , S(xN)]m ⊂ D, and for some
x0 ∈ E+ we have S(x0) = 1̂, (x1, . . . , xN) ≺ x0, and [(x1, . . . , xN)/x0] ⊂ D, then

S
(
x0ψ̂(x1/x0, . . . , xN/x0)

)
6 ψ̂

(
S(x1), . . . , S(xN)

)
,

S
(
x0ϕ̂(x1/x0, . . . , xN/x0)

)
> ϕ̂

(
S(x1), . . . , S(xN)

)
;

(3) If both E and F are f -algebras with unit elements 1 and 1̂, respectively, and
in addition S(1) = 1̂, [x1, . . . , xN ]m ⊂ D, and [S(x1), . . . , S(xN)]m ⊂ D, then

S
(
ψ̂(x1, . . . , xN)

)
6 ψ̂

(
S(x1), . . . , S(xN)

)
,

S
(
ϕ̂(x1, . . . , xN)

)
> ϕ̂

(
S(x1), . . . , S(xN)

)
.

Remark 6.3. The generalizations of Jensen’s inequality for convex functions ϕ
are referred to as the Jessen inequalities ; cp. [104, Theorems 2.4 and 2.6]. In the
particular case when E is a vector space of real-valued functions and F = R, for the
inequalities in Theorem 6.2 (3) see [5, 102, 103, 104] where some other versions and
generalizations of the Jessen inequality are also collected.
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7. Beckenbach–Dresher Type Inequalities

In this section we consider a Beckenbach–Dresher type inequality in vector lat-
tices. Let (G, +) be a commutative semigroup, while E is a uniformly complete
vector lattice, and f1, . . . , fN : G → E+. Assume that some set-valued map
F : G → P(E+) meets the following three conditions:

1) (f1(x), . . . , fN(x)) ≺ e for every e ∈ F (x),
2) F (x) + F (y) ⊂ F (x + y)− E+ for all x, y ∈ G, and
3) the infimum (supremum) of {eϕ̂(f(x)/e) : e ∈ F (x)} exists in E for each

x ∈ G, where f(x) := (f1(x), . . . , fN(x)) ∈ EN
+ .

Then, given a continuous function ϕ : RN
+ → R+, we have the operator g : G → E

(h : G → E) well defined as

g(x) := inf
e∈F (x)

(
eϕ̂

(
f(x)

e

)) (
h(x) := sup

e∈F (x)

(
eϕ̂

(
f(x)

e

)))
.

Theorem 7.1. Suppose that the operators g, h : G → E are defined as above.
Then the following assertions hold:

(1) g is subadditive whenever f1, . . . , fN are subadditive, and ϕ is an increasing
convex function satisfying ϕ(0) = 0;

(2) h is superadditive whenever f1, . . . , fN are superadditive, and ϕ is an incre-
asing concave function satisfying ϕ(0) = 0.

For a single-valued map F (x) = {f0(x)} (x ∈ G) with f0 : G → E+ we have the
following particular case of Theorem 7.1, see [79].

Corollary 7.2. Let (G, +), E, and f1, . . . , fN are the same as in Theorem 7.1.
Suppose that an operator f0 : G → E+ is such that (f1(x), . . . , fN(x)) ≺ f0(x) for
all x ∈ G. Then, given a continuous function ϕ : RN

+ → R+, we have the operator
h : G → E well defined as

h(x) := f0(x)ϕ̂
(
f1(x)/f0(x), . . . , fN(x)/f0(x)

)
.

Moreover,
(1) h is subadditive whenever f0 is superadditive, f1, . . . , fN are subadditive,

and ϕ is an increasing convex function satisfying ϕ(0) = 0;
(2) h is superadditive whenever f0, f1, . . . , fN are superadditive, and ϕ is an

increasing concave function satisfying ϕ(0) = 0.

Remark 7.3. The subadditivity of h (with convex ϕ, superadditive f0, and
subadditive f1, . . . , fN) means that for all x, y ∈ G we have the Peetre–Persson
inequality:

f0(x + y)ϕ̂

(
f(x + y)

f0(x + y)

)
6 f0(x)ϕ̂

(
f(x)

f0(x)

)
+ f0(y)ϕ̂

(
f(y)

f0(y)

)
.

The inequality holds in the opposite direction whenever ϕ is concave and
f0, f1, . . . , fN are superadditive.

Remark 7.4. Theorem 7.1 in the particular case of E = R was obtained by
Persson [107, Theorems 1 and 2], while Corollary 7.2 covers the “single-valued case”
by Peetre and Persson [105]. A short history of the Beckenbach–Dresher inequality
is presented in [117]. Some instances of the inequality are also addressed in [99, 103,
104].
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8. Beckenbach–Dresher Type Inequalities
in Uniformly Complete f-Algebras

In this section we preent the main results from [74]. Let (G1, +) and (G2, +) be
commutative semigroups, while E is a uniformly complete f -algebra and f1, . . . , fN :
G1 → E+. Let P(M) stands for the power set of M . Assume that some set-valued
map F : G2 → P(Orth(E)+) meets the following three conditions:

(i) π−1 exists in Orth(E) for every π ∈ F (u) and u ∈ G2,
(ii) F (u) + F (v) ⊂ F (u + v)−Orth(E)+ for all u, v ∈ G2, and
(iii) the infimum (the supremum) of {πϕ̂(π−1f(u1)) : π ∈ F (u2)} exists in E for

all u1 ∈ G1 and u2 ∈ G2, where f(u) := (f1(u), . . . , fN(u)) ∈ EN
+ and π−1f(u) :=

(π−1f1(u), . . . , π−1fN(u)) ∈ EN
+ .

Given a function ϕ ∈ A (RN
+ ) and a set-valued map F : G2 → P(Orth(E)+)

satisfying 3 (i–iii), we have the operator g : G1 × G2 → E (h : G1 × G2 → E) well
defined as

g(u1, u2) := inf
π∈F (u2)

{
πϕ̂

(
π−1f(u1)

)}
(
h(u1, u2) := sup

π∈F (u1)

{
πϕ̂

(
π−1f(u2)

)} )
.

(2)

Theorem 8.1. Suppose that the operators g, h : G1 × G2 → E are defined as
in (2). Then:

(1) g is subadditive whenever f1, . . . , fN are subadditive and ϕ ∈ A (RN+) is
increasing and convex;

(2) h is superadditive whenever f1, . . . , fN are superadditive, and ϕ ∈ A (RN+) is
increasing and concave.

Remark 8.2. If the hypotheses of 3 (i–iii) are fulfilled for some fixed u1, v1 ∈ G1

and u2, v2 ∈ G2 then the inequalities hold:

g(u1 + v1, u2 + v2) 6 g(u1, u2) + g(v1, v2),

h(u1 + v1, u2 + v2) > h(u1, u1) + h(v1, v2).

Remark 8.3. An f -algebra E can be identified with Orth(E) if and only if E has
a unit element. Thus, Theorem A remains valid if E is a uniformly complete unitary
f -algebra and the set-valued map F : G → P(E+) satisfies the condition 3 (i–iii)
with Orth(E) replaced by E. Moreover, we can take ϕ ∈ B0(RN+) in subadditive
case and ϕ ∈ B(RN+) with ϕ(0) > 0 in superadditive case, see [21, Theorem 4.12].

Corollary 8.4. Let G := G1 = G2, g0(u) := g(u, u), h0(u) := h(u, u) for all
u ∈ G, and ϕ ∈ A (RN+). Then g0 : G → E is subadditive whenever f1, . . . , fN

are subadditive and ϕ is increasing and convex, while h0 : G → E is superadditive
whenever f1, . . . , fN are superadditive, and ϕ is increasing and concave.

Remark 8.5. Corollary 8.4 in the particular case of E = R was obtained by Pers-
son [107, Theorems 1 and 2]. Of course, Corollary 8.4 is equivalent to Theorem A. In-
deed, under the hypotheses of Theorem A put G := G1×G2, u = (u1, u2) ∈ G1×G2,

f̃i(u) := fi(u1) (i := 1, . . . , N), F̃ (u) := F (u2). If f1, . . . , fN are subadditive then

f̃1, . . . , f̃N are also subadditive and g0 : G → E is subadditive by Corollary 8.4.

Since g0(u) := infπ∈F̃ (u)

{
πϕ̂

(
π−1f̃(u)

)}
= g(u1, u2), we get the subadditivity of g.

Similar argument work for the superadditive case.

For a single-valued map F (x) = {f0(x)} (x ∈ G) with f0 : G → Orth(E)+ we
have the following particular case of the above Theorem, see [79]. Denote x

π
:= π−1x.
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Corollary 8.6. Suppose that f1, . . . , fN are subadditive, f0 : G → Orth(E)+ is
superadditive, and f0(u) is invertible in Orth(E) for every u ∈ G. Then, given an
increasing continuous convex function ϕ ∈ A (RN

+ ) and u1, v1 ∈ G1, u2, v2 ∈ G2, the
inequality holds:

f0(u2 + v2)ϕ̂

(
f(u1 + v1)

f0(u2 + v2)

)
6 f0(u2)ϕ̂

(
f(u1)

f0(u2)

)
+ f0(v2)ϕ̂

(
f(v1)

f0(v2)

)
. (3)

The reverse inequality holds in (3) whenever f0, f1, . . . , fN are superadditive, and ϕ
is an increasing concave function.

Putting G := G1 = G2 u := u1 = u2, and v := v1 = v2, we get, see [105] and [107].

Corollary 8.7. Under the hypotheses of Corollary 2 the Peetre–Persson inequal-
ity holds:

f0(u + v)ϕ̂

(
f(u + v)

f0(u + v)

)
6 f0(u)ϕ̂

(
f(u)

f0(u)

)
+ f0(v)ϕ̂

(
f(v)

f0(v)

)
. (4)

If f0, f1, . . . , fN are superadditive and ϕ is increasing and concave, then (4) is re-
versed.

Remark 8.8. Corollary 8.7 covers the “single-valued case” by Peetre and Pers-
son [105]. A short history of the Beckenbach–Dresher inequality is presented in [117].
Some instances of the inequality are also addressed in [99, 104].

9. Jensen Type Inequalities
for Positive Multilinear Operators

Maligranda [97, Theorem 1] proved that, given a positive bilinear operator T
from E×F to L0(Ω, Σ, µ) with ideal spaces E and F on measure spaces (Ω1, Σ1, µ1)
and (Ω2, Σ2, µ2) respectively, the inequality

T (ϕ0(x0, x1), ϕ1(y0, y1)) 6 Cϕ(T (|x0|, |y0|), T (|x1|, |y1|))
holds for any x0, x1 ∈ E and y0, y1 ∈ F , provided that the parameters ϕ, ϕ0, ϕ1

are nonnegative concave positively homogeneous continuous functions on R2
+ and

ϕ0(1, s)ϕ1(1, t) 6 Cϕ(1, st) for some C > 0 and all s, t > 0. Then it was used to
prove an interpolation theorem for positive bilinear operators on Calderón–Loza-
novskĭı spaces [97], see also [101].

The aim of this section is to present a generalization of the mentioned Maligranda
result for positive multilinear operators between uniformly complete vector lattices
with a broader class of parameter functions.

Definition 9.1. Recall that the Hadamard product s ◦ t of vectors s :=
(s1, . . . , sm) ∈ Rm and t := (t1, . . . , tm) ∈ Rm is defined as s ◦ t := (s1t1, . . . , smtm).
A tuple K̄ := (K0, K1, . . . , Km) of conic sets K0, K1, . . . , Km in RN is said to be mul-
tiplicative if s1◦. . .◦sm ∈ K0 for all sj ∈ Kj (j := 1, . . . , m). A tuple (ϕ0, ϕ1, . . . , ϕm)
is called submultiplicative (supermultiplicative) on K̄, if Ki ⊂ dom(ϕi) for all
i := 0, 1, . . . ,m and

ϕ0(s1 ◦ . . . ◦ sm) 6 ϕ1(s1) · . . . · ϕm(sm)(
ϕ0(s1 ◦ . . . ◦ sm) > ϕ1(s1) · . . . · ϕm(sm)

)

for all sj ∈ Kj (j := 1, . . . , m).
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Definition 9.2. Let E1, . . . , Em and G be vector lattices. A multilinear (m-li-
near) operator S : E1× . . .×Em → G is called positive, if S(x1, . . . , xm) > 0 for all
0 6 xi ∈ Ei (i = 1, . . . , m).

Theorem 9.3. Let E1, . . . , Em and G be uniformly complete vector lattices,
x1,j, . . . , xN,j ∈ Ej (j = 1, . . . , m). Suppose that K̄ = (K0, K1, . . . , Km) is a mul-
tiplicative tuple of conic sets in RN and consider two tuples (ϕ0, ϕ1, . . . , ϕm) and
(ψ0, ψ1, . . . , ψm) with ϕj, ψj ∈ H (Kj) (j = 1, . . . , m), ϕ0 ∈ H∧(RN , K0) and ψ0 ∈
H∨(RN , K0) which are supermultiplicative and submultiplicative on K̄, respectively.
Let [x1,j, . . . , xN,j] ⊂ Kj, for all j = 1, . . . , m. Then for every positive m-linear op-
erator B : E1 × . . . × Em → G with [B(x1,1, . . . , x1,m), . . . , B(xN,1, . . . , xN,m)] ⊂ K0

we have
B

(
ϕ̂1(x1,1, . . . , xN,1), . . . , ϕ̂m(x1,m, . . . , xN,m)

)
6

6 ϕ̂0

(
B(x1,1, . . . , x1,m), . . . , B(xN,1, . . . , xN,m)

)
,

B
(
ψ̂1(x1,1, . . . , xN,1), . . . , ψ̂m(x1,m, . . . , xN,m)

)
>

> ψ̂0

(
B(x1,1, . . . , xN,1), . . . , B(xN,1, . . . , xN,m)

)
.

Remark 9.4. Two different proofs of Maligranda’s inequality are presented
in [97]. The first stemming from Astashkin [2] starts with the simple case of step
functions and then employs a density argument. The second one uses the spe-
cific lower envelope representation of Calderón–Lozanovskĭı concave functions. Our
approach involves different tools: it rely upon extended homogeneous functional
calculus [69, 70] and Fremlin’s tensor product of Archimedean vector lattices [39].
Details can be found in [76].

10. Inequalities for Bilinear Operators:
A Transfer Principle

In this section we present a transfer principle from [73] which enables us to
transform inequalities with semi-inner products to inequalities containing positive
semidefinite symmetric bilinear operators with values in a vector lattice. Concerning
bilinear operators on vector lattices see [17, 20, 67, 72].

Definition 10.1. Let E, F , and G be vector lattices and X be a real vector
space. A bilinear operator B : X × X → G is said to be symmetric if B(x, y) =
B(y, x) for all x, y ∈ X and positive semidefinite if B(x, x) > 0 for every x ∈ X. A se-
mi-inner product on X is a positive semidefinite symmetric form (·, ·) : X×X → R.
A bilinear operator B : E ×E → G is called orthosymmetric if |x| ∧ |y| = 0 implies
B(x, y) = 0 for all x, y ∈ E or, equivalently, B(|x|, |x|) = B(x, x) (x ∈ E), see
[17, 20, 67].

Denote I := {1, . . . , n}, J := {1, . . . ,m}, and N = mn. Fix a bijection σ from
I×J onto {1, . . . , N}. Consider positively homogeneous continuous mappings Φ, Φ′ :
RN → Rk, Ψ, Ψ′ : RN → Rl and denote (t ∈ RN and u ∈ EN):

Φ(t)= (ϕ1(t), . . . , ϕk(t)), Φ′(t)= (ϕ′1(t), . . . , ϕ
′
k(t)),

Φ(t)Φ′(t) := (ϕ1(t)ϕ
′
1(t), . . . , ϕk(t)ϕ

′
k(t)),

Φ̂(u) ◦ Φ̂′(u) := (ϕ̂1(u) ◦ ϕ̂ ′
1(u) . . . , ϕ̂k(u) ◦ ϕ̂ ′

k(u)).
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Similar meaning have the symbols Ψ(t)Ψ′(t) and Ψ̂(u) ◦ Ψ̂′(u). Clearly, ϕi, ϕ′i
(1 6 i 6 k) and ψj, ψ′j (1 6 j 6 l) are positively homogeneous continuous real

valued functions on RN .

Theorem 10.2 (Transfer Principle). Let E and F be uniformly complete vector
lattices, X be a real vector space, and xi, yj ∈ X for all i ∈ I and j ∈ J . Assume
that ϕ ∈ H∧(Rk) and ψ ∈ H∨(Rk). If for any semi-inner product (·, ·) on X the
inequality

ψ
(
Ψ(t)Ψ′(t)

)
6 ϕ

(
Φ(t)Φ′(t)

)

holds with t = (t1, . . . , tN) ∈ RN , tσ(i,j) := (xi, yj)
(
(i, j) ∈ I × J

)
, then for any

positive semidefinite symmetric bilinear operator 〈·, ·〉 from X × X to E and any
positive orthosymmetric bilinear operator ◦ : E × E → F the inequality

ψ̂
(
Ψ̂(u) ◦ Ψ̂′(u)

)
6 ϕ̂

(
Φ̂(u) ◦ Φ̂′(u)

)

holds with u = (u1, . . . , uN) ∈ EN , uσ(i,j) := 〈xi, yj〉
(
(i, j) ∈ I × J

)
. If the equality

holds in semi-inner product case and ◦ is a lattice bimorphism, then equality holds
also in the case of symmetric positive semidefinite bilinear operators.

Remark 10.3. The inequalities in Theorem 10.2 may contain in both parts ar-
bitrary finite but equal number of factors with respect to · and ◦, see [73]. One can
also state and prove Theorem 10.2 with positively homogeneous functions defined on
some conic sets of finite-dimensional space using the extended homogeneous func-
tional calculus. But in this case the necessary compatibility conditions become too
awkward.

Remark 10.4. To produce a new inequality for bilinear operators by means
of the above Transfer Principle one have only to analyze the structure of a given
inequality for semi-inner product identifying in it the functions ϕ, ψ, ϕi, ϕ′i, ψi, and
ψ′i and rewriting it, if there is a need, in an appropriate form.

Corollary 10.5. Let X be a real vector space E be a vector lattice, and 〈·, ·〉
be a positively semidefinite symmetric bilinear operator from X × X to E. Let F
be another vector lattice and ◦ : E × E → F be a positive orthosymmetric bilinear
operator. Then the following general form of the classical Cauchy–Bunyakowski
inequality holds:

〈x, y〉 ◦ 〈x, y〉 6 〈x, x〉 ◦ 〈y, y〉 (x, y ∈ X).

Remark 10.6. Corollary 10.5 was announced in [65] and proved in [20, Theo-
rem 3.8], see also [17, Theorem 32]. Previously, Huijsmans and de Pagter [52] proved
the inequality with ◦ replaced by the multiplication of a semiprime f -algebra E = F .
The semiprimeness assumption was removed by Bernau and Huijsmans [8] and the
result was established for any almost f -algebra E by Buskes and van Rooij [22].

Remark 10.7. Corollary 10.5 is the simplest particular case of Theorem 10.3,
since only coordinate functions are used: ϕ1(t) = dt1, ϕ′1(t) = dt2, ψ1(t) = dt3,
ψ′1(t) = dt4 (t = (t1, t2, t3, t4)) with t1 := (x, x), t2 := (y, y), and t3 = t4 := (x, y).
Nevertheless, the proof of the Transfer Principle uses exactly the same tools as
needed for the proof of this very special case (cp. [20, Theorem 3.8]). Several
illustrative examples demonstrating the strength of the Transfer Principle are con-
sidered in [73]. A great deal of inequalities admitting generalization by means of the
Transfer Principle is spread everywhere in the literature, see [33, 34, 35, 99, 114].
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Part II. Multilinear Operators
and Polynomials in Vector Lattices

In this part we collect three sorts of results: 1) Radon–Nikodým type theorems
and the Maharam extension of orthosymmetric multilinear operators, 2) the results
on representation and extension of orthogonally additive polynomials on vector lat-
tices, and 3) Strassen type result on the existence of a multilinear operator with
given marginals.

1. Introduction

Polynomials in infinitely many variables or polynomials defined on infinite-
dimensional spaces have been explored since the late of 1800’s. The study of poly-
nomials on vector lattices is of more recent date.

It was shown in [29] that the space of s-homogeneous polynomials on an infinite
dimensional Banach space with an unconditional basis does not have an uncondi-
tional basis. Later it was discovered in [42] that homogeneous polynomials with
unconditionally convergent monomial expansions coincide with the homogeneous
polynomials that are regular with respect to the Banach lattice structure of the do-
main. A polynomial is regular if it is representable as the difference of two positive
polynomials, while the positivity means that the generating symmetric multilinear
operator is positive. From this starting point an increasing attention is attracted to
order properties of polynomials.

The study of bilinear operators within the framework of the theory of vector
lattice originated about sixty years ago. Some historical remarks, main trends, and
results are reflected in survey papers [17] and [68]. In [112] the class of orthog-
onally additive homogeneous polynomials on Banach lattice was introduced. An
inseparable companion of orthogonal additivity turns out to be orthosymmetry in-
troduced in [22]. The aim of this part is to provide new information about the order
structure of orthogonally additive homogeneous polynomials and orthosymmetric
multilinear operators. One of the main tools is the following: each bounded orthog-
onally additive homogeneous polynomial acting from an Archimedean vector lattice
into a separated convex bornological space can be represented as the composite of
an exponentiation-like mapping and a bounded linear operator, provided that the
bornological space is complete or the vector lattice is uniformly complete.

The unexplained terms of use below can be found in [1, 64, 78, 98]. All vector
lattices in this paper are assumed real and Archimedean.

2. Orthosymmetry

Definition 2.1. A multilinear operator ϕ : Es → F is called positive if
ϕ(x1, . . . , xs) > 0 for all 0 6 x1, . . . , xs ∈ E and orthoregular if it can be writ-
ten as the difference of two positive orthosymmetric operators. We say that ϕ is
orthosymmetric, if ϕ(x1, . . . , xs) = 0 provided that |xi|∧ |xj| = 0 for some pair of in-
dices i 6= j and symmetric, if ϕ(x1, . . . , xs) = ϕ(xσ(1), . . . , xσ(s)) for all x1, . . . , xs ∈ E
and every permutation σ of {1, . . . , s}.

Definition 2.2. An s-linear operator ϕ : E1 × · · · × Es → F is called a lattice
s-morfism if for every k = 1, . . . , s and for all xi ∈ E+

i (i = 1, . . . , k− 1, k +1, . . . , s)
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the map xk 7→ ϕ(x1, . . . , xk, . . . , xs) (xk ∈ Ek) is a lattice homomorphism (x0 and
xs+1 should be omitted).

Definition 2.3. Let 2 6 s ∈ N and E be an Archimedean vector lattice. The
pair (Es¯,¯s) is called an s-power of E if

(1) Es¯ is a vector lattice;

(2) ¯s : E × · · · × E → Es¯ is a symmetric lattice s-morphism;

(3) for any Archimedean vector lattice F and every symmetric lattice s-morphism
ϕ : E× · · ·×E → F there exists a unique lattice homomorphism S : Es¯ → F such
that S ◦ ¯s = ϕ.

Remark 2.4. Definition 2.3 was introduced by K. Boulabiar and G. Buskes [14].
They also established that the s-power exists for any Archimedean vector lattice.
The case s = 2 was examined earlier by G. Buskes and A. van Rooij [23].

Theorem 2.5. Let s ∈ 2, 3, . . . and E be a vector lattice. Then E has a unique
(up to a lattice isomorphism) s-power (Es¯,¯s).

Definition 2.6. A bornology on a set X is an increasing (relative to ⊂) filter B,
the elements of which form covering of X. In this case the sets of B are called
bounded. A base of a bonology B on X is any basis of the filter B. A map acting
between the sets with bornology is called bounded if the image of any bounded set
is bounded.

Definition 2.7. The bornology on a vector space E over K is called vector
bornology if the maps E × E 3 (x, y) 7→ x + y ∈ E and K × E 3 (λ, x) 7→ λx ∈ E
are bounded. A bornological vector space is a pair (E, B), consisting of a vector
space E and a vector bornology B on E. A bornological vector space (E, B), whose
bornology B is stable under the formation of convex hulls will be called a convex
bornological space.

Let Lb(E, F ) stands for the set of bounded linear operators, acting from E to F ,
and Lb(

sE,F ) stands for the set of bounded orthosymmetric s-linear operators,
acting from Es to F . Further details concerning bornological spaces can be found
in [11].

Theorem 2.8. Let E be a uniformly complete vector lattice, F a convex bor-
nological space or a locally convex space, and ϕ : E × · · · × E → F a bounded
orthosymmetric s-linear map. Then the map Tϕ : Es¯ → F defined by

Tϕ(x) = ϕ(x, |x|, . . . , |x|) (x ∈ E)

is a unique bounded linear map with ϕ = Tϕ ◦ ¯s. The correspondence ϕ 7→ Tϕ is
an isomorphism of Lb(

sE, F ) onto Lb(E, F ).

Remark 2.9. This theorem extends the result which was established in [14,
Theorem 5.1] by K. Boulabier and G. Buskes for positive orthosymmetric multilinear
operators, provided that E and F are uniformly complete vector lattices. It is easy
to see that the given arguments work also for any order bounded orthosymmetric
operator.

Theorem 2.10. Let E be a vector lattice and F be a convex bornological space
or locally convex space. Then any bounded orthosymmetric multilinear map from
Es to F is symmetric.

Remark 2.11. This theorem was established in [16, Theorem 2] for the case
when E and F are Archimedean vector lattices and the multilinear map is positive.
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The case of positive and bounded bilinear operators in vector lattices is considered
in [22, Colorrary 2] and [20, Theorem 3.4], respectively. In [9, Theorem 14] it is
shown that when E and F are vector lattices the condition of order boundedness of
bilinear operator can be weaken to continuity with respect to uniform convergence.

3. Orthogonally Additive Polynomials

The class of orthogonally additive polynomials was introduce by Sundaresan [112]
and received much attention [10, 25, 53, 106]. It turned out that, very often, a
polynomial is orthogonally additive if and only if its generating multilinear operator
is orthosymmetric. To state the result we need some definition.

Definition 3.1. Let E and F be vector spaces and s an integer > 1. The
map P : E → F is called a homogeneous polynomial of degree s (or an s-
homogeneous polynomial), if there exists an s-linear map ϕ : Es → F , such that
P (x) = ϕ(x, . . . , x) for all x ∈ E. Thus, a homogeneous polynomial P of degree s
admits a representation P = ϕ ◦ Ds, where Ds : E → Es is a diagonal imbedding
E 3 x 7→ (x, . . . , x) ∈ Es. Let us agree that a homogeneous polynomial of degree
s = 0 is a constant map e 7→ f ∈ F (e ∈ E).

Definition 3.2. For a homogeneous polynomial P : E → F of degree s there
exists a unique symmetric multilinear map ϕ : Es → F , called a generating map,
such that P (x) = ϕ(x, . . . , x). The generating map ϕ : Es → F can be represented
as

ϕ(x1, . . . , xs) =
1

s!
∆xs∆xs−1 . . . ∆x1P,

where ∆h is the difference operator defined as ∆hf(x) = f(x+h)−f(x), see [32, 84].
Moreover, ∆h1,...,hk

P (x) = 0 for all x ∈ E, if k > s (see [84, Lemma 15.9.2]).

Definition 3.3. A homogeneous polynomial is said to be positive if the gener-
ating symmetric multilinear operator is positive and regular if it is representable as
the difference of two positive polynomials.

Definition 3.4. A map P : E → F is a polynomial (not necessary homogeneous)
of degree 6 s, if there exists an integer s and k-homogeneous polynomial Pk (k =
0, 1, . . . , s) such that P = P0 + P1 + . . . + Ps. Here P0 = const and P1 is a linear
operator.

Definition 3.5. Let E be a vector lattice. A polynomial P defined on E is said
to be orthogonally additive if P0(x + y) = P0(x) + P0(y) for any disjoint x, y ∈ E,
where P0(x) := P (x)− P (0). Clearly, a homogeneous polynomial P is orthogonally
additive if P (x + y) = P (x) + P (y) for disjoint x, y ∈ E. Recall that two elements
x, y ∈ E are said to be disjoint if |x| ∧ |y| = 0.

Definition 3.6. A bornological space (E, B) is called separated if {0} is the
only bounded vector subspace of E.

Proposition 3.7. Let E be a vector lattice and F a separated bornological vector
space. A polynomial P : E → F , P = P0+P1+. . .+Ps is orthogonally additive if and
only if the homogeneous polynomials Pk (k = 1, . . . , s) are orthogonally additive.

Theorem 3.8. Let E be a vector lattice and F be a convex bornological space.
A bounded s-homogeneous polynomial P : E → F is orthogonally additive if and
only if its generating s-linear map ϕ : Es → is orthosymmetric.
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4. Radon–Nikodým Type Theorems
for Multilinear Operators and Polynomials

Definition 4.1. Let E and G be vector lattices and let B be a positive multilin-
ear operator from Es into G. Say that B is order interval preserving or possesses the
Maharam property if, for every x1, . . . , xs ∈ E+ and 0 6 g 6 B(x1, . . . , xs) ∈ G+,
there exist 0 6 u1 6 x1, . . . , 0 6 us 6 xs such that g = B(u1, . . . , us) or, in short,
B ( [0, x1]×· · ·× [0, xs] ) = [0, B(x1, . . . , xs)] for all x1, . . . , xs ∈ E+. A positive order
continuous multilinear operator with the Maharam property is called a multilinear
Maharam operator.

Remark 4.2. In [15] the notion of almost right (or left) interval preserving bilin-
ear operator was considered and a bilinear version of Arendt’s theorem on duality
between lattice homomorphisms and interval preserving operators was proved [15,
Theorem 14], cf. [1, Theorem 7.4].

Definition 4.3. Let A be another positive multilinear operator from Es

into G. Then B is said to be absolutely continuous with respect to A whenever
B(x1, . . . , xs) ∈ A(x1, . . . , xs)

⊥⊥ for all 0 6 x1, . . . , xs ∈ E. Evidently, any B ∈ A⊥⊥

is absolutely continuous with respect to A.

Theorem 4.4. Let E and G be Dedekind complete vector lattices, B : Es → G
be a positive orthosymmetric s-linear operator and B = ΦB¯s for a uniquely defined
positive linear operator ΦB : Es¯ → G. The following conditions are equivalent:

(1) B is order interval preserving.

(2) For at least one i := 1, . . . , s the map x 7→ B(x1, . . . , xi−1, ·, xi+1, . . . , xs) is
order interval preserving for all 0 6 xk ∈ E, k 6= i (x0 and xs+1 are omitted).

(3) For any 0 6 x ∈ E and 0 6 g 6 B(x, . . . , x) there exists u ∈ E, 0 6 u 6 x
such that g = B(u, . . . , u).

(4) ΦB is order interval preserving.

Theorem 4.5. Let E, G, B, and ΦB be as in 4.4. Then B is a Maharam
operator if and only if ΦB is a Maharam operator.

Making use of Theorems 4.4 and 4.5 we are able to transfer some results from
linear Maharam operators to orthosymmetric multilinear Maharam operators.

Theorem 4.6 (Multilinear Radon–Nikodým Theorem). Let E and G be
Dedekind complete vector lattices and let B and A be orthosymmetric order contin-
uous positive multilinear operators from Es to G with A possessing the Maharam
property. Then the following assertions are equivalent:

(1) B ∈ {A}⊥⊥.

(2) B is absolutely continuous with respect to A.

(3) There exists an orthomorphism 0 6 ρ ∈ Orth∞(E) such that

B(x1, . . . , xs) = A(x1, . . . , xi−1, ρxi, xi+1, . . . , xs) (x1, . . . , xs ∈ D(ρ)).

(4) There exists an increasing sequence of positive orthomorphisms (ρn), ρn ∈
Orth(E), such that for any i := 1, . . . , s the representation holds:

B(x1, . . . , xs) = sup
n

A(x1, . . . , xi−1, ρxi, xi+1, . . . , xs) (x1, . . . , xs ∈ E+).

Theorem 4.7 (Polynomial Radon–Nikodým Theorem). Let E and G be
Dedekind complete vector lattices and let P and Q be order continuous positive
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orthogonally additive polynomials from E to G with Q possessing the Maharam
property. Then the following assertions are equivalent:

(1) P ∈ {Q}⊥⊥.

(2) P is absolutely continuous with respect to Q.

(3) There exists an orthomorphism 0 6 ρ ∈ Orth∞(E) such that

P (x) = Q(ρx) (x ∈ D(ρ)).

(4) There exists an increasing sequence of positive orthomorphisms (ρn), ρn ∈
Orth(E), such that the representation holds:

P (x) = sup
n

Q(ρx) (x ∈ E+).

Remark 4.8. The class of linear Maharam operators was first studied by
D. Maharam in [95] (see also the survey paper [96]). W. A. J. Luxemburg and
A. R. Schep [94] extended a portion of Maharam’s theory to the case of positive op-
erators in Dedekind complete vector lattices. The terms “Maharam property” and
“Maharam operator” were introduced in [94] and [62], respectively (more details see
in [64]). The Maharam property transplanted to the entourage of convex operators
is presented in [78]. Every linear Maharam operator is an interpretation of some
order continuous linear functional in an appropriate Boolean-valued model, see [64].
This Boolean-valued status of the concept of Maharam operator was established in
[62]. Bilinear versions of 4.3–4.6 were proved in [72]. Theorem 4.7 was obtained by
Z. A. Kusraeva.

5. Maharam Extension of
Orthosymmetric Multilinear Operators

The Maharam extension and its functional representation (well known in the
linear case, see [64, Sections 4.5 and 6.3] and [93]) can be developed for orthosym-
metric positive multilinear operators. It was done in [116] by B. B. Tasoev. Denote
by P(E) the Boolean algebra of band projections in E.

Definition 5.1. A positive multilinear operator B : Es → F is called strictly
positive if B(|x|, . . . , |x|) = 0 implies x = 0 for every x ∈ E.

Theorem 5.2. Let E and F be vector lattices with F Dedekind complete. Let
B be a strictly positive orthosymmetric multilinear operator from Es into F . Then
there exist a Dedekind complete vector lattice E, a lattice isomorphism j from E
into E, and a multilinear Maharam operator B : E

s → F such that the following
hold:

(1) B(x1, . . . , xs) = B(jx1, . . . , jxs) (x1, . . . , xs ∈ E).

(2) The order ideal in E generated by j(E) coincides with E.

(3) There is an f -algebra isomorphism h : Orth(F ) → Orth(E) such that

πB(x1, . . . , xs) = B(jx1, . . . , jxi−1, h(π)jxi, jxi+1, . . . , jxs)

(i := 1, . . . , s; x1, . . . , xs ∈ E; π ∈ Orth(F )+).

(4) E is dense in E in the sense that for all z ∈ E and 0 < ε ∈ R there is zε ∈ E,
a partition (πξ) ⊂ P(F ) of the projection [B(z, z)] ∈ P(F ), and a family (xξ) ⊂ E
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such that

B(zε, |zε|, . . . , |zε|) = o-
∑

πξB(jxξ, |jxξ|, . . . , |jxξ|),∣∣B(zε, |zε| . . . , |zε|)−B(z, |z|, . . . , |z|)
∣∣ 6 εB(|z|, . . . , |z|).

Theorem 5.3. Let E, E, F , B, B, and j be as in Theorem 5.1. For any operator
D ∈ {B}⊥⊥ there exists a unique operator D ∈ {B}⊥⊥ such that D(x1, . . . , xs) =
D(jx1, . . . , jxs) for all x1, . . . , xs ∈ E. The correspondence D 7→ D is a lattice
isomorphism of Dedekind complete vector lattices {B}⊥⊥ and {B}⊥⊥.

Let A be a nonempty set, A a σ-algebra of its subsets, and N a σ-ideal in A .
Let M(A, A ,N ) be the space of cosets of measurable functions on A. We will
suppose that the measurable space (A , N ) is of countable type; i. e., an arbitrary
family (Aα) ⊂ A \N with Aα ∩ Aβ ∈ N (α 6= β) is at most countable. In this
event M(A,A , N ) is an order complete vector lattice. Let F be an order-dense
ideal in M(A,A ,N ). A sequence (An) ⊂ A of pairwise disjoint sets is called
a partition of a measurable set A0 ∈ A if χA0 = sup χAn in F , where χC stands for
the characteristic function of C.

Let P be a σ-compact topological space. Denote by A ×B the σ-algebra genera-
ted by the rectangles C ×B where B ⊂ P is an arbitrary Baire set and C ∈ A .

Assume that ϕ : A ×B → F is a positive countably additive measure, L0(A ×
P, ϕ) is the space of (ϕ-equivalence classes of) almost everywhere finite functions
measurable with respect to σ-algebra A ×B, and L1(A× P, ϕ) is the order dense
ideal of ϕ-integrable functions.

Let µ be a regular Borel measure on P , and let L1(P, µ) be the vector lattice
of cosets of real µ-measurable functions on P . Assume that E is an order dense
ideal in L1(P, µ) containing the identically one function 1P . Given e ∈ E, the
coset of the function (s, t) 7→ e(t)

(
(s, t) ∈ A × P

)
is identified with e. Denote

E(s) := {es : e ∈ E}.
Theorem 5.4. For any order continuous strictly positive orthosymmetric multi-

linear operator B : E(s) → F there exists a unique countably additive ample measure
ϕ : A ×B → F such that

B(x1, . . . , xs) =

∫

A×B

x1(t), . . . , xs(t) dϕ(s, t) (x1, . . . , xs ∈ E).

Moreover, for any order bounded orthosymmetric multilinear operator D ∈ {B}⊥⊥
there exists a unique (up to ϕ-equivalence) ϕ-measurable function KD such that

D(x1, . . . , xs) =

∫

A×B

KD(s, t)x1(t), . . . , xs(t) dϕ(s, t) (x1, . . . , xs ∈ E).

The correspondence D 7→ KD is a lattice isomorphism from {B}⊥⊥ ⊂ BL∼o (E; F )
onto an order dense ideal Lϕ := {g ∈ L0(A × P, ϕ) : g · (E) ⊂ L1(A × P, ϕ)} in
L0(A× P, ϕ).

6. Representation of Orthogonally Additive Polynomials

In this section we present the representation results for orthogonally additive
polynomials obtained in [80].
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Definition 6.1. A disk is an absolutely convex set. Let E be a vector space.
A disk A ⊂ E is called a comletant disk if the space EA =

⋃∞
k=1 nA semi-normed by

the gauge of A is a Banach space. A convex bornological space is called a complete
convex bornological space if its bornology has a base consisting of comletant disks.

We denote the space of bounded linear operators from E to F by Lb(E,F ) and
the space of E-valued s-homogeneous orthogonally additive bounded polynomials
by Po(

sE, F ).

Theorem 6.2. Let E be a uniformly complete vector lattice and F be a convex
bornological space. Then for any orthogonally additive order bounded s-homo-
geneous polynomial P : E → F there exists a unique bounded linear operator
S : Es¯ → F such that P = S ◦ ¯s ◦Ds, i. e.

P (x) = S(xs¯) = S(x¯ · · · ¯ x︸ ︷︷ ︸
s times

) (x ∈ E). (5)

Moreover, we have Po(
sE,F ) ' Lb(E

s¯, F ).

Theorem 6.3. Let E be a vector lattice and F be a complete convex bornolog-
ical space or quasicomplete locally convex space. Then for any orthogonally ad-
ditive order bounded s-homogeneous polynomial P : E → F there exists a
unique bounded linear operator S such, that the representation (5) holds and
P0(

sE,F ) ' Lb(E
s¯, F ).

Theorem 6.4. Let E be a uniformly complete vector lattice and F be a convex
bornological space. Then for any bounded orthogonally additive polynomial P :
E → F of degree s > 1 there exists a unique collection of bounded linear operators
Sk : Ek¯ → F (k := 1, . . . , s) and a constant S0 ∈ F such, that

P (x) = S0 +
s∑

k=1

Sk(x
k¯) (x ∈ E). (6)

Theorem 6.5. Let E be a vector lattice and F a complete bornological space
or quasicomplete locally convex spaces. Then for any order bounded orthogonally
additive polynomial P : E → F of degree s > 1 there exists a unique collection of
order bounded linear operators Sk : Ek¯ → F (k := 1, . . . , s) and a constant S0 ∈ F
such, that (6) holds.

Corollary 6.6. Let E and F be vector lattices and at least one of them is
uniformly complete. Then for any order bounded orthogonally additive polynomial
P : E → F of degree s > 1 there exists a unique collection of order bounded linear
operators Sk : Ek¯ → F (k := 1, . . . , s) and a constant S0 ∈ F such that (6) holds.

Remark 6.7. Since for a Banach function lattice E we have Es¯ = E(s) = {f s :
f ∈ E} and f s¯ = f s for every f ∈ E, Theorem 6.2 extends the representation
result [10, Theorem 2.3] by Benyamini Y., Lassalle S., Llavona J. G.

7. Kernel Representation of
Orthogonally Additive Polynomials

In this section we present some kernel representation result for homogeneous
polynomials obtained in [82].
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Let (Ω1, Σ1, µ1) and (Ω2, Σ2, µ2) be σ-finite measure spaces and (Ω, Σ, µ) :=
(Ω1×Ω2, Σ1 ⊗ Σ2, µ1 ⊗ µ2) be their product. Consider ideal function spaces
E ⊂ L0(Ω1, Σ1, µ1) and F ⊂ L0(Ω2, Σ2, µ2).

Definition 7.1. Let E be a vector lattice. A homogeneous polynomial P on
E is said to be orthogonally additive if P (x + y) = P (x) + P (y) for any disjoint
x, y ∈ E.

Definition 7.2. A k-homogeneous polynomial P : E → F is said to admit
a kernel representation, if there exists a µ-measurable function of two variables
K : Ω2 × Ω1 → R, such that for every x ∈ E for µ1-almost all s ∈ Ω2 the function
t 7→ K(s, t)xk(t) is µ1-integrable on Ω1 and

(Px)(s) =

∫

Ω1

K(s, t) xk(t) dµ1(t) (x ∈ E).

Theorem 7.3. Let P : E → F be an orthogonally additive k-homogeneous
polynomial. Then the following are equivalent:

(1) P admits a kernel representation.
(2) If 0 6 xn 6 x ∈ E (n ∈ N) and xn → 0 in a measure µ1, then Pxn → 0

µ2-almost everywhere.
(3) P satisfies the following conditions: (a) if µ1(Bn) → 0 (Bn ∈ Σ1) and χBn 6

x ∈ E (n ∈ N), then P (χBn) → 0 µ2-almost everywhere; (b) if 0 6 xn 6 x ∈ E
(n ∈ N) and xn → 0 µ1-almost everywhere, then Pxn → 0 µ2-almost everywhere.

Theorem 7.4. Let F be an order continuous Köthe function space. Then every
orthogonally additive k-homogeneous polynomial P : Lk(Ω1, Σ1, µ1) → F admits a
kernel representation.

Definition 7.5. Let E be a Banach lattice. A k-homogeneous polynomial
P : E → F is said to be majorizing if there exists f ∈ F+ such that |P (x)| 6 f‖x‖k

for all x ∈ E.

Definition 7.6. For 1 < p ∈ R and a Köthe function space E define (E(p), ‖·‖p)
by E(p) := {u ∈ L0(Ω1, Σ1, µ1) : |u|p ∈ E} and ‖u‖p := (‖|u|p‖E)1/p.

Theorem 7.7. Let E be an order continuous Köthe function space. Then
every orthogonally additive k-homogeneous majorizing polynomial P : E(k) →
L0(Ω2, Σ2, µ2) admits a kernel representation.

Remark 7.8. The proof of Theorem 6.3 can be reduced to Buhvalov’s criterion
of a kernel representability of linear operators [55, Ch.XI, § 1, Theorem 1] by the use
of representation results from § 6. (Bukhvalov’s characterization of kernel operators
was obtained in [18], see also [19].) Theorems 7.4 and 7.7 are deduced in a similar
way from [55, Ch.XI, § 1, Theorem 6] and [55, Ch.XI, § 1, Theorem 5], respectively.

8. Extension of Orthogonally Additive Polynomials

In [91, Theorem 14] Loan established that a positive homogeneous polynomial
defined on a majorizing sublattice of a vector lattice with values in a Dedekind
complete vector lattice admits an extension to the ambient lattice wich is again a
positive homogeneous polynomial. If the polynomial under consideration is orthog-
onally additive, then its positive extension can be also chosen orthogonally additive.
But a stronger statement, the existence of a “simultaneous extension”, can be proved
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using the representation results from § 6. Moreover, a Buck–Phelps type characteri-
zation of extreme extensions of orthogonally additive homogeneous polynomials can
be also deduced. These results obtained in [80] are presented below.

Let Pr
oa(

sE,F ) stands for a set of all regular s-homogeneous orthogonally addi-
tive polynomials from E to F (see Definitions 3.3 and 3.5).

Definition 8.1. A sublattice G of a vector lattice E is called majorizing, if for
every x ∈ E there exists g ∈ G such that x 6 g.

Denote by Rp the restriction map P 7→ P |G from Pr
oa(

sE, F ) onto Pr
oa(

sG,F ).

Theorem 8.2. Let G be a majorizing sublattice of a vector lattice E and F be a
Dedekind complete vector lattice. Then there exists an order continuous lattice ho-

momorphism Ê : Pr
oa(

sG,F ) → Pr
oa(

sE,F ) (a “simultaneous extension” operator)

such that Rp ◦ Ê = I, where I is the identity operator in Pr
oa(

sG,F ).

Let P : G → F be a positive orthogonally additive s-homogeneous polynomial.
Denote by E+(P ) a set of all positive orthogonally additive s-homogeneous exten-
sions of P to E. Then E+(P ) is a convex set. If G is majorizing then E+(P ) 6= ∅.

Definition 8.3. An extreme point of E+(P ) is called an extreme extension of P .

Theorem 8.4. Let E and G be uniformly complete vector lattices, F be a
Dedekind complete vector lattice, and G be a sublattice of E. Assume that the set
E+(P ) is nonempty for a positive orthogonally additive s-homogeneous polynomial

P : E → F . A polynomial P̂ ∈ E+(P ) is an extreme point of E+(P ) if and only if

inf
{
P̂

(∣∣(xs + us)
1
s

∣∣) : u ∈ G
}

= 0 (x ∈ E).

Remark 8.5. Theorem 8.2 is a combination of Corollary 6.6 and the existence
of “simultaneous extension” operator for linear regular operators, see [64, Theo-
rem 3.4.11]. Theorem 8.4 is proved by reducing to the case of linear positive op-
erator, i. e. to the Lipecki–Plachke–Tomsen Theorem [1, Theorem 2.7] making use
of Corollary 6.6. Similar results for positive orthosymmetric bilinear operators see
in [20] and [83], respectively.

9. Bilinear Operators with Given Marginals

In his celebrated paper V. Strassen gave a necessary and sufficient condition for
the existence of a positive measure with given marginals [115, Theorem 7]. This
result was generalized by many authors in different directions, see [50, 56, 57] and
the references therein. In [75] an attempt was made to extend Strassen’s theorem to
multilinear operator with values in a Dedekind complete vector lattice (Kantorovich
space). The results are presented below. Consider a vector spaces X, Y and a
Dedekind complete vector lattice E. Let BL(X, Y ; G) and P(E) stand for the space
of all bilinear operators from X×Y to G and the Boolean algebra of band projections
in E, respectively.

Definition 9.1. A set U of bilinear operators from X × Y into E is called
weakly (order) bounded if the set {B(x, y) : B ∈ U } is order bounded in E for all
x ∈ X and y ∈ Y , and weakly o-closed if it is close with respect to point-wise order
convergence.

Definition 9.2. A partition of unity in P(E) is a pair-wise disjoint family
of band projections (πξ)ξ∈Ξ with

∑
ξ∈Ξ πξ = IE. If (Bξ)ξ∈Ξ is a family of oper-

ators in BL(X, Y ; E) and the operator B ∈ BL(X,Y ; E) is such that B(x, y) =
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o-
∑

ξ∈Ξ πξBξ(x, y) for all x ∈ X and y ∈ Y , then B is called the mixing of (Bξ)ξ∈Ξ

by a partition of unity (πξ)ξ∈Ξ. Denote by mix(U ) the set of all mixings with
(Bξ) ⊂ U .

Definition 9.3. The set U ⊂ BL(X, Y ; E) is called cyclic if U = mix(U ), i. e.
U contains all mixings of its members.

Remark 9.4. A key role in Strassen’s proof plays Alaoglu’s theorem. Thus,
looking for the Strassen type theorems for multilinear operators it is desirable to
have some operator versions of Alaoglu’s theorem. The approach presented in [75]
relay upon the intrinsic characterization of subdifferentials (see Theorem 9.5 below).
This fact was established in [79] making use of Boolean valued analysis approach.
A standard proof was found in [63]. Details can be found in [78].

Theorem 9.5. A weakly order bounded set of linear operators is a subdifferential
if and only if it is convex, cyclic, and weakly o-closed.

Making use of Theorem 9.5 and the “linearization” via algebraic tensor product
or Fremlin’s tensor product we arrive at following two results.

Theorem 9.6. Let X and Y be vector spaces, while G and H be Dedekind
complete vector lattices. Fix e ∈ X, f ∈ Y , S ∈ L(X, H), and T ∈ L(Y, H).
Assume that D is a convex, cyclic, weakly closed and weakly bounded subset in
BL(X, Y ; G) and Q : G → H is a sublinear Maharam operator. The following are
equivalent:

(1) There exist B ∈ D and R ∈ ∂Q such that S = R◦B(·, f) and T = R◦B(e, ·).
(2) For any x ∈ X and y ∈ Y the inequality holds

Sx + Ty 6 sup
D∈D

{
Q

(
D(x, f) + D(e, y)

)}
.

Theorem 9.7. Let E, F , G H be vector lattices with G and H Dedekind
complete. Fix e ∈ E+, f ∈ F+, S ∈ L+(E, H), and T ∈ L+(F, H). Assume that D
is a convex, cyclic, weakly closed and weakly bounded subset in BL+(E, F ; G) and
Q : G → H is a sublinear Maharam operator. Then the following are equivalent:

(1) There exist B ∈ D and R ∈ ∂Q such that S 6 R◦B(·, f) and T 6 R◦B(e, ·).
(2) For every x ∈ E and y ∈ F the inequality holds

Sx + Ty 6 sup
D∈D

{
Q

(
D(x+, f) + D(e, y+)

)}
.
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Part III. Continuous and Measurable
Bundles of Banach Lattices

The following problems concerning Banach spaces of continuous and measurable
sections were studied: homogeneous functional calculus and analytic representations
of some classes of dominated operators in Banach lattices of sections; Banach–Stone
type theorem for Banach spaces of continuous sections; multiplicative representation
and desintegration in Banach section space.

1. Introduction

The theory of Banach bundles stemming from J. von Neumann proved to have
a vast area of applications in analysis. In particular, continuous and measurable
Banach bundles are often used for representing various functional-analytical objects,
see [38, 41, 43, 44, 51, 64, 111]. It was shown in [61] that a Banach–Kantorovich
space over a Dedekind complete vector lattice is linearly isometric to the space of
almost global sections of a suitable continuous Banach bundle over an extremally
diconnected compactum. However, uniqueness of the representing bundle was not
established. It was A. E. Gutman [43] who found a class of uniqueness for this
representation result, the class of ample (or complete) continuous Banach bundles.

The next problem was to specify this representation result if the norming lattice
is an ideal function space. In this case the representing object is measurable Banach
bundle and the uniqueness class is formed of liftable Banach bundles, i.e. measurable
Banach bundles admitting lifting; this result is also due to A. E. Gutman [44]. It
turned out that ample continuous Banach bundles and liftable measurable Banach
bundles have other advantages and interesting applications [40, 45, 46, 64].

The aim of this part is to specify the Gutman’s theory of liftable Banach bundles
for bundles of Banach lattices and to find some new applications.

All unexplained terms can be found in [43, 44, 45, 64], and [98]. All vector lattices
in this paper are real and Archimedean.

2. Measurable Bundles of Banach Lattices

In this section, we give a brief exposition of measurable bundle of Banach lattices
and corresponding vector lattices of measurable sections.

Definition 2.1. Let Ω be a nonempty set. A bundle of Banach lattices over Ω
is a mapping X defined on Ω and associating a Banach lattice Xω := X (ω) :=(
X (ω), ‖ · ‖X (ω)

)
:=

(
Xω, ‖ · ‖ω

)
with every point ω ∈ Ω. The value Xω of a bundle

X is called its stalk over ω. A mapping s defined on a nonempty set dom(s) ⊂ Ω is
called a section over dom(s) if s(ω) ∈ Xω for every ω ∈ dom(s). A section over Ω
is called global. Let S(Ω,X ) stands for the set of all global sections of X endowed
with the structure of a vector lattice by letting u 6 v ⇔ (∀ω ∈ Ω) u(ω) 6 v(ω) and
(αu + βv)(ω) = αu(ω) + βv(ω) (ω ∈ Ω), where α, β ∈ R and u, v ∈ S(Ω,X ). For
each section s ∈ S(Ω, X ) we define its point-wise norm by |||s||| : ω 7→ ‖s(ω)‖X (ω)

(ω ∈ Ω). A set of sections S is called stalkwise dense in X if the set {s(ω) : s ∈ S}
is dense in X (ω) for every ω ∈ Ω.

Definition 2.2. Now consider a nonzero measure space (Ω, Σ, µ) with the direct
sum property. Let X be a bundle of Banach lattices over Ω. A set of sections
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C ⊂ S(Ω,X ) is called a measurability structure on X , if it satisfies the following
conditions:

(a) C is a vector lattice, i. e. λ1c1 + λ2c2 ∈ C , |c| ∈ C (λ1, λ2 ∈ R; c1, c2 ∈ C );
(b) |||c||| : Ω → R is measurable for every c ∈ C ;

(c) the set C is stalkwise dense in X .

If C is a measurability structure in X then we call the pair (X ,C ) a measurable
bundle of Banach lattices over (Ω, Σ, µ). We shall usually write simply X instead
of (X , C ).

Definition 2.3. Let (X ,C ) be a measurable bundle of Banach lattices over Ω.
Denote by S∼(Ω,X ) the set of all sections of X defined almost everywhere on Ω.
We say that s ∈ S∼(Ω,X ) is a step-section, if s =

∑n
k=1 χAk

ck for some n ∈ N,
A1, . . . , An ∈ Σ, c1, . . . , cn ∈ C . A section u ∈ S∼(Ω,X ) is called measurable if, for
every K ∈ Σ with µ(K) < +∞, there is a sequence (sn)n∈N of step-sections such
that sn(ω) → u(ω) for almost all ω ∈ K. The set of all measurable sections of X is
denoted by L 0(Ω, Σ, µ, X ) or L 0(µ, X ) for brevity.

Suppose that X is a measurable Banach bundle over (Ω, Σ, µ). Consider the
equivalence relation ∼ in the set L 0(µ, X ): u ∼ v means that u(ω) = v(ω) for
almost all ω ∈ Ω. The coset containing v ∈ L 0(µ, X ) is denoted by ṽ or v∼. The
quotient set L0(µ, X ) := L0(Ω, Σ, µ, X ) := L 0(µ, X )/∼ is a vector lattice under
the operations and ordering defined as (sũ + tṽ) = (su + tv)∼ (s, t ∈ R) and ũ 6 ṽ
provided that u(ω) 6 v(ω) for almost all ω ∈ Ω. It is clear that the vector lattice
L0(µ, X ) is uniformly complete. For every ṽ ∈ L 0(µ, X )/∼ we may define its
(vector) norm v := ṽ := |||v|||∼ ∈ L0(µ).

Let E be an order dense ideal in L0(Ω, Σ, µ) and E(X ) stands for the set of
all u ∈ L0(µ, X ) with u ∈ E. Endow E(X ) with the operations, ordering, and
E-valued norm induced from L0(Ω,X ). If E is a normed lattice then E(X ) is also
a normed lattice under the “mixed” norm |||u||| := ‖ u ‖E

(
u ∈ E(X )

)
.

Theorem 2.4. If a measure space (Ω, Σ, µ) possesses the direct sum property and
if X is a measurable bundle of Banach lattices over Ω, then the pair

(
L0(Ω, X ), · )

is a Banach–Kantorovich lattice over L0(Ω, Σ, µ). If E is an ideal of L0(Ω) then(
E(X ), · ) is a Banach–Kantorovich lattice over E. If, in addition, E is a Banach

lattice, then
(
E(X ), |||·|||) is a Banach lattice.

Remark 2.5. Recall that a Banach–Kantorovich space over a Dedekind complete
vector lattice E is a vector spaces X with a decomposable norm · : X → E which
is norm complete with respect to order convergence in E. Decomposability means
that for all e1, e2 ∈ E+ and x ∈ X, with x = e1 + e2 there exist x1, x2 ∈ X such
that x = x1 + x2 and xk = ek (k := 1, 2). If a Banach–Kantorovich space is in
addition a vector lattice and the norm is monotone (|x| 6 |y| ⇒ x 6 y ) then it
is called a Banach–Kantorovich lattice. Any Banach–Kantorovich lattice is a lattice
ordered module over the f -algebra Orth( X ). A detailed presentation see in [64].

3. Liftable Bundles of Banach Lattices

Let X be a measurable bundle of Banach lattices over Ω. Since the measure
space (Ω, Σ, µ) possesses the direct sum property, we can consider a fixed lifting
ρ : L∞(Ω) → L∞(Ω), see [54, 87].
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Definition 3.1. A mapping ρX : L∞(µ, X ) → L∞(µ, X ) is called a lifting of
L∞(µ, X ) associated with ρ if, for all u, v ∈ L∞(µ, X ) and e ∈ L∞(µ), the following
hold:

(1) ρX (u) ∈ u and dom(ρX (u)) = Ω;

(2) ρX (u) = ρ( u );

(3) ρX (u + v) = ρX (u) + ρX (v);

(4) |ρX (u)| = ρX (|u|);
(5) ρX (eu) = ρ(e)ρX (u);

(6) {ρX (u) : u ∈ L∞(Ω,X )} is stalkwise dense in X .

Definition 3.2. We say that X is a liftable bundle of Banach lattices provided
that there exists a lifting of L∞(Ω) and a lifting of L∞(Ω,X ) associated with it.

Remark 3.3. This definition (with 2.6 (4) excluded) for general measurable Ba-
nach bundles was introduced by A. E. Gutman [44]. He also demonstrated that
2.6 (6) cannot be derived from other properties of lifting. I. G. Ganiev adapted this
notion to bundles of Banach lattices by adding property 2.6 (4).

Definition 3.4. Measurable bundles of Banach lattices X and Y over (Ω, Σ, µ)
are said to be isometrically isomorphic if there exists a family of isometric lattice
isomorphisms hω : X (ω) → Y (ω) (ω ∈ Ω) such that h̃(L 0(µ, X )) = L 0(µ, Y ),

where the section v : ω 7→ hω(u(ω)) is measurable for every u ∈ L 0(µ, X ) and h̃ is

defined by h̃(u) := v.

Theorem 3.5. Every Banach–Kantorovich lattice X over an order-dense ideal
E ⊂ L0(Ω) is linearly isometric to E(X ) for some liftable bundle of Banach lattices
X over Ω. Moreover, such a bundle X is unique to within an isometric isomor-
phism.

Theorem 3.6. Let X be a liftable bundle of Banach lattices over Ω. Then
there exists (a unique to within an isometric isomorphism) liftable bundle of Banach
lattices X ′ (called a dual bundle) such that the following hold:

(1) at each point ω ∈ Ω, the stalk X ′(ω) is a Banach sublattice of X (ω)′;

(2) if v ∈ L 0(µ, X ) and v′ ∈ L 0(µ, X ′), then 〈v, v′〉 ∈ L 0(µ) where 〈v, v′〉 :
ω 7→ 〈v(ω), v′(ω)〉ω;

(3) for all v ∈ L∞(µ, X ) and v′ ∈ L∞(µ, X ′), we have ρ(〈v, v′〉∼) =
〈ρX (ṽ), ρX ′(ṽ′)〉, where ρX and ρX ′ are respective liftings of X and X ′ associ-
ated with ρ;

(4) if a bounded mapping v′ : ω 7→ v′(ω) is such that, for every v ∈ L∞(µ, X )
the function 〈v, v′〉 is measurable and ρ(〈v, v′〉) = 〈ρX (v), v′〉, then v′ ∈ L∞(µ, X ′);

(5) if u′ ∈ L∞(µ, X ′), then for every ω ∈ Ω we have

ρ
(

u′
)
(ω) = sup{ρ(〈u,u′〉)(ω) : u ∈ L∞(µ, X ), u 6 1}.

Remark 3.7. The idea of a measurability structure has been proposed by N. Din-
culeanu [31, Notes and remarks, 8] as early as in 1966, but has not been much studied
in subsequent twenty five years. In a series of papers A. E. Gutman undertook a
systematic study of this conception and built a nice theory of measurable Banach
bundles, see [43, 44, 45, 46]. A different approach to defining measurability of
sections see in [111].
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4. Lattices of Measurable Vector Functions

The vector lattices E(X) and Ew(X ′) are Banach–Kantorovich spaces, see [64,
2.3.7 and 2.3.10]. By Theorem 3.5 there exist liftable bundles of Banach lattices X
and Y such that E(X) ' E(X ) and Ew(X ′) ' E(Y ).

Definition 4.1. We say that (X ,Y ) is a representing pair of measurable Ba-
nach bundles for (E(X), Ew(X ′)).

It turns out that one can take Y = X ′, while X is in a sense a “liftable hull”
of a trivial bundle Ω× {X}.

Theorem 4.2. Let X be a Banach lattice and (Ω, Σ, µ) a measure space with the
direct sum property. There exists a liftable measurable bundle of Banach lattices
X := (X (ω))ω∈Ω over Ω, unique to within a ρ-isometry, and such that if X ′ :=
(X ′(ω))ω∈Ω is the dual measurable Banach bundle, then

(1) X is a Banach sublattice of each stalk X (ω) and X ′(ω) is a Banach sublattice
of X (ω)′ for all ω ∈ Ω;

(2) the respective liftings ρX and ρX ′ of X and X ′ are module preserving, are
associated with ρ, and ρX (c̃) = c for all constant functions c : Ω → X;

(3) for every section u ∈ L 0(Ω,X ) the function u coinciding with u on u−1(X)
and vanishing on Ω \ u−1(X) is contained in L 0(µ,X);

(4) the mapping sending the coset of u ∈ L 0(µ, X ) to the coset of u ∈ L 0(µ,X)
is a lattice isomorphism and an isometry of L0(µ, X ) onto L0(µ,X);

(5) for every section v ∈ L 0(µ, X ′) the function vX : ω 7→ v(ω)|X from Ω to X ′

is contained in L 0
w(µ,X ′);

(6) the mapping sending the coset of v ∈ L 0(µ, X ′) to the coset of vX ∈
L 0

w(µ,X ′) is a lattice isomorphism and an isometry of L0(µ, X ′) onto L0
w(µ,X ′).

Assume that K and ϕ are the same as in Definition 2.1 of Part I.

Proposition 4.3. Let u1, . . . , uN ∈ L 0(Ω, Σ, µ, X), and [ũ1, . . . , ũN ] ⊂ K. Then
there exists a measurable set Ω0 ⊂ Ω such that µ(Ω\Ω0) = 0, [u1(ω), . . . , uN(ω)] ⊂ K
for all ω ∈ Ω0, and ϕ̂(ũ1, . . . , ũN) is the equivalence class of the measurable vector-
function ω ∈ Ω0 7→ ϕ̂(u1(ω), . . . , uN(ω)) ∈ X. Moreover,

ϕ̂(ũ1, . . . , ũN) 6 ‖ϕ‖( ũ1 ∨ · · · ∨ ũN ).

Remark 4.4. According to 4.2 (6) the spaces L0(µ, X ′) and L0
w(µ,X ′) are

isometric and lattice isomorphic, while the corresponding equivalence classes in
L0(µ, X ′) are essentially larger than in L0

w(µ,X ′). So, it may happen that there is a
measurable section with some nice properties but no equivalent vector function enjoy
them. Therefore, one can expect that Theorem 4.2 leads to a better understanding
of the structure of lattices of measurable vector-valued functions.

Remark 4.5. At the same time the Banach lattice E(X ) deserves an indepen-
dent study. Let P be a property of a Banach lattice and F ∈ (P) means that the
Banach lattice F possesses the property P. Then the following question naturally
arises: is is true that

E(X ) ∈ (P) ⇔ E ∈ (P) and Xω ∈ (P) for almost all ω ∈ Ω.

Much is known about this question for the Banach lattice of measurable vector-
valued functions [27, 30, 87, 88]. But in the case of Banach lattice of measurable
sections we have a collection of challenging problems.
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5. Representation of Dominated Operators

In this section we present two representation theorems for ϕ̂(T1, . . . , TN) with
dominate operators T1, . . . , TN obtained in [71]. First, we recall two types of domi-
nated operators, see [64, 4.1.3 (3, 4)].

Definition 5.1. Let X be a Banach space and E an ideal space. An operator
S : X → E is dominated if the image of the unit ball in X is order bounded in E.
The element S defined as

S = sup{|Sx| : x ∈ X, ‖x‖ 6 1}
is called the abstract norm of S. The linear space of all dominated operators
M(X,E) is denoted also by LA(X, F ) and is called the space of operators with
abstract norm. If X is a Banach lattice then M(X, E) is a Dedekind complete
vector lattice. Actually, the exact dominant is presented by the mapping t 7→ t S
(t ∈ R).

Definition 5.2. An operator S : E → Y is dominated if there exists a positive
functional e∗ on E such that ‖Te‖ 6 〈|e|, e∗〉 (e ∈ E). The exact dominant is
calculated as follows:

T e = sup

{ n∑

k=1

|Tek‖ : e1, . . . , en ∈ E+,

n∑

k=1

ek = e, n ∈ N
}

(e ∈ E+).

Put ϕ̂(u1(ω), . . . , uN(ω)) = 0 whenever u1, . . . , uN ∈ L 0(µ,X ′) but
ϕ̂(u1(ω), . . . , uN(ω)) cannot be correctly defined in X ′, i.e. [u1, . . . , uN ] is not con-
tained in K.

Theorem 5.3. Let X be a Banach lattice, E an ideal space on (Ω, Σ, µ), and
(X , X ′) a representing pair of measurable Banach bundles for (E(X), Ew(X ′)).
Consider ϕ ∈ H (RN , K) and S1, . . . , SN ∈ M(X,E) with [S1, . . . , SN ] ⊂ K and
put e := S1 + · · · + SN , S := ϕ̂(S1, . . . , SN). Then there exist global measurable
sections v1, . . . , vN ∈ L 0(Ω,X ′) such that

(1) ṽ1, . . . , ṽN ∈ E(X ′);
(2) [v1(ω), . . . , vN(ω)] ⊂ K for all ω ∈ Ω;
(3) the map ω 7→ ϕ̂(v1(ω), . . . , vN(ω)) (ω ∈ Ω) is a global measurable section of

X ′ and for all x ∈ X and ω ∈ Ω we have

ρe(Sx)(ω) = 〈x, ϕ̂(v1(ω), . . . , vN(ω))〉;

(4) ρe( S )(ω) = ‖ϕ̂(v1(ω), . . . , vN(ω))‖X ′(ω) (ω ∈ Ω).
For any Banach space X the mapping which sends a dominated operator S ∈

MF (E, X ′) to the restriction h(S) := S ′|X of its adjoint S ′ : X ′′ → F to X is an
isomorphism of M(E, X ′) onto M(X,F ); moreover, S = h(S) for all S

Theorem 5.4. Let X be a Banach lattice, E an ideal space over (Ω, Σ, µ)
with point separating Köthe dual E ′, identified with E∗ := {e∗ ∈ L0(µ) : (∀e ∈
E) ee∗ ∈ L1(µ)}, and (X ,X ′) a representing pair of measurable Banach bundles
for (E(X), Ew(X ′)). Let the dominated operators S1, . . . , SN ∈ MF (E,X ′) with
[S1, . . . , SN ] ⊂ K are given, and S := ϕ̂(S1, . . . , SN). Then there exist global mea-
surable sections v1, . . . , vN ∈ L 0(Ω,X ′) such that

(1) ṽ1, . . . , ṽN ∈ F (X ′);
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(2) [v1(ω), . . . , vN(ω)] ⊂ K for all ω ∈ Ω;
(3) for every ϕ ∈ H (C,K), the function ω 7→ ϕ̂(v1(ω), . . . , vN(ω)) (ω ∈ Ω) is a

measurable section of X ′ and the representation holds

〈x, S(e)〉 =

∫

Ω

e(ω)〈x, ϕ̂(v1(ω), . . . , vN(ω))〉 dµ(ω) (e ∈ E, x ∈ X);

(4) the function ω 7→ ‖ϕ̂(u1(ω), . . . , uN(ω))‖ (ω ∈ Ω) is measurable and

S (e) =

∫

Ω

e(ω)‖ϕ̂(u1(ω), . . . , uN(ω))‖ dµ(ω) (e ∈ E).

6. Continuous Bundles of Banach Lattices

In this section we give a brief exposition of continuous bundles of Banach lattices
and corresponding vector lattices of continuous sections. Denote by Q an extremally
disconnected compact Hausdorff space.

Definition 6.1. Let X be a bundle of Banach lattices over Q. A set of global
sections C ⊂ S(Q, X ) is called a continuity structure on X if it satisfies the
following conditions:

(a) C is a vector lattice, i. e. αc1 + βc2 ∈ C , |c| ∈ C (α, β ∈ R; c1, c2 ∈ C );
(b) the pointwise norm |||c||| : Q → R is continuous for every c ∈ C ;

(c) C is stalkwise dense in X .

Definition 6.2. The pair (X , C ) is called a continuous bundle of Banach
lattices over Q, whenever C is continuity structure on X .

Definition 6.3. Let (X ,C ) be a continuous bundle of Banach lattices over Q.
We say that section u ∈ S(D, X ) over D ⊂ Q is C -continuous at a point q ∈ D if
the function |||u− c||| is continuous at q for every c ∈ C . A section u ∈ S(D, X ) is
C -continuous if it is C -continuous at every point q ∈ D.

We shall write simply X instead of (X ,C ) and continuous instead of C -
continuous. Denote by C∞(Q, X ) the space of its (extended) almost global contin-
uous sections, see [64, § 2.4].

Theorem 6.4. Let X be a continuous bundle of Banach lattices over extremal
compact Q. Then C∞(Q, X ) is Banach–Kantorovich lattice over C∞(Q). If E is an
order-dense ideal in C∞(Q) then E(X , · ), is Banach–Kantorovich lattice over E.
If in addition E is a Banach lattice, then E(X ), |||·||| is also a Banach lattice.

Theorem 6.5. Every Banach–Kantorovich lattice X over an order-dense ideal
E ⊂ C∞(Q) is lattice isometric to E(X ) for some ample continuous bundle X of
Banach lattices over Q. Moreover, such a bundle X is unique to within a lattice
isometry.

Theorem 6.6. Let X be a Banach lattice. Then there exist an ample bundle of
Banach lattices X such that:

(a) at every point q ∈ Q the lattice X is a dense sublattice of the stalk X (q);
(b) for each section u ∈ X there exists a comeager supset Q0 ⊂ Q such that

u(q) ∈ X for all q ∈ Q0;
(c) for every ideal E ⊂ C∞(Q) spaces E(X) and E(X ) are isometrically lattice

isomorphic.
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Let (Ω, Σ, µ) a be measure space with the direct sum property and Q the Stone
space of the Boolean algebra B(Ω) :=

∑
/µ−1(0). Denote by τ : Ω → Q the canon-

ical immersion of Ω into Q corresponding to the lifting τ of L∞(Ω) [64, 1.2.7 (3)].
Let Y be an ample continuous bundle of Banach lattices over Q and X = Y ◦ τ .

If C is a continuous structure in Y , then the set C ◦τ is a measurability structure
in X , since |c| ◦ τ = |c ◦ τ |, |||c ◦ τ ||| = |||c||| ◦ τ and |||c||| ◦ τ is a measurable function.
The bundle Y ◦ τ is always regarded as a measurable Banach bundle with respect
to the measurability structure C ◦ τ .

Theorem 6.7. Let (Ω, Σ, µ) be measure space with the direct sum property. The
mapping v 7→ (v◦τ)∼ is a lattice isometry of Banach–Kantorovich lattices C∞(Q, Y )
and L0(Ω, X ), associated with isomorphism (e 7→ (e ◦ τ)∼) : C∞(Q) → L0(Ω). The
image of C(Q, Y ) under this lattice isometry is L∞(Ω,X ).

Theorem 6.7 describes a method of constructing a liftable Banach bundle given
an ample continuous bundle of Banach lattices over the corresponding Stone space.
The following result shows that every liftable measurable bundle of Banach lattices
can be obtained in such a way.

Theorem 6.8. Let X be a ρ-invariant measurable bundle of Banach lattices
over Ω that has a lifting associated with ρ. Then there exists an ample continuous
bundle of Banach lattices X̂ over Q (unique to within a lattice isometry) such that

X = X̂ ◦ τ and ρ(u) = û ◦ τ for all u ∈ L∞(Ω,X ).

Remark 6.9. The theory of ample continuous Banach bundles was developed
by A. E. Gutman [43]–[46], see also [64]. The corresponding theory of measurable
bundles of Banach lattices was developed in [40] and [71]. This section presents the
main results of a forthcoming paper by S. N. Tabuev and starts the study of ample
continuous bundles of Banach lattices.

7. Banach–Stone Type Problem

One of the important classical theorems of functional analysis states that the
categories of compact Hausdorff spaces and Banach spaces of continuous functions
defined on these compacts are isomorphic. In particular, this fact is the starting
point of the thriving area of mathematics, noncommutative geometry. If we replace
the spaces of continuous functions by the spaces of continuous vector-valued func-
tions then it may happen that for some Banach spaces X and Y the Banach spaces
C(Q,X) and C(P, Y ) are isomorphic for non-homeomorphic compacts Q and P . So
a natural question arises: what extra conditions must be satisfied by the isomor-
phism T : C(Q,X) → C(P, Y ) and the spaces X and Y in order to guarantee the
existence of a homeomorphism ϕ : P → Q. This problem with various modifications
is known as Banach–Stone problem. There is a rich literature devoted to different
aspects of this problem [6, 24, 28, 36, 37]. At the same time the theory of contin-
uous Banach bundles allow us to consider spaces of vector-functions as special case
of bundles with constant stalk. So, it is worth to consider the extended versions of
Banach–Stone type theorems for section spaces associated with continuous bundles
of Banach lattices. Below we present a result from [108] by M. A. Pliev and S. N.
Tabuev.

Let Q and P be compact Hausdorff spaces, X and Y be continuous bundles of
Banach lattices over Q and P , respectively. Then the spaces C(Q, X ) and C(P, Y )
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of global continuous section are also Banach lattices with the point-wise ordering.
The norm of a section f is given by |||f ||| = ‖‖f(·)‖X (·)‖C(Q). Take arbitrary t ∈ Q
and s ∈ Q and introduce the sets

Mt = {f ∈ C(Q, X ) : f(t) = 0}; Ns = {g ∈ C(K, Y ) : g(s) = 0}.
The sets Mt and Ns are closed order ideals in C(Q, X ) and C(P, Y ), respectively.

Definition 7.1. Let T be a lattice isomorphism from C(Q, X ) onto C(P, X ).
We say that T satisfy the property P if, for every f ∈ C(Q, X ), we have

(∀s ∈ P ) (Tf)(s) 6= 0 ⇔ (∀t ∈ Q) f(t) 6= 0.

Observe an important property of lattice isomorphisms with the property P.

Proposition 7.2. Let an isomorphism T : C(Q, X ) → C(P, Y ) satisfy the
property P. Then for every t ∈ Q there exists a unique s ∈ K such that T (Mt)=Ns.

Theorem 7.3. Let T : C(Q, X ) → C(P, Y ) be a lattice isomorphism with the
property P. Then Q and P are homeomorphic and the representation holds:

(Tf)(s) = H(s)f(ψ(s)) (∀ f ∈ C(Q, X ); s ∈ P );

where ψ : P → Q is a homeomorphism and H is a homomorphism of continuous
Banach bundles X and Y , with s 7→ H(s) ∈ L (Xψ(s), Ys).

Remark 7.4. If Q is extremally disconnected then ‖T‖ = sups∈K ‖H(s)‖. In the
special case of constant bundles X and Y we obtain the result in [28].

8. Multiplicative Representation

Definition 8.1. Let X be a Banach space. A Markushevich basis (M -basis for
short) of X is a family (xi, x

′
i)i∈I , where xi ∈ X and x′i ∈ X ′, such that:

(1) xi(x
′
j) = δij (the Kronecker delta symbol) for every i, j ∈ I;

(2) X = span{xi : i ∈ I};
(3) {x′i : i ∈ I} separates the points of X (i. e. for each x ∈ X\{0} there is i ∈ I

such that x′i(x) 6= 0).
It is well known that every separable Banach space has an M -basis, see [48].

Moreover, every weakly compactly generated Banach space has an M -basis, see [48,
Corollary 5.2]. For a detailed presentation we refer to [48].

Definition 8.2. A liftable measurable Banach bundle X over (Ω, Σ, µ) is said
to have a generalized M-basis (or GM -basis for short) if there is a family (ϕi, ϕ

′
i)i∈I

of measurable section, where ϕi ∈ L∞(µ, X ) and ϕ′i ∈ L∞(µ, X ′), such that
1) 〈ϕ′i, ϕj〉 = δij1Ω;
2) for every order ideal E of L0(µ) there exists an order dense subspace E0 of E

such that ‖f(·) −∑n
k=1 hk(·)ϕk(·)‖X (·) → 0 a. e. as n → ∞ for every step-section

f ∈ E(X ); hk ∈ E0 for every 1 6 k 6 n; ϕk are the elements of GM -basis;
3) for every measurable section f ∈ L0(X ), f 6= 0, there exist ϕ′i0 and a measur-

able set A ∈ Σ, µ(A) > 0, so that g(ω) := 〈ϕ′i0 , f〉(ω) > 0 for every ω ∈ A.

Example 8.3. Let X be a Banach space which have an M -basis (xi, x
′
i)i∈I and

(Ω, Σ, µ) a finite measure space. Consider a constant Banach bundle Ω × X and
its liftable hull XΩ, see [71, Definition 3.2 and Theorem 3.3]. Then the measurable
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Banach bundle XΩ have a GM -basis (ϕi, ϕ
′
i)i∈I such that ϕi = xi1Ω; ϕ′i = x′i1Ω for

every i ∈ I.

Definition 8.4. Let (Ω, Σ, µ) be a finite measure space. A liftable Banach
bundle X over Ω is said to have the S-property if for every measurable sections
f, g ∈ L0(µ, X ) there exists a measurable subbundle Yf,g of X such that f(t), g(t) ∈
Yf,g(t) for almost every all t ∈ Ω and Yf,g has a GM -basis.

Example 8.5. Let X be a Banach space and (Ω, Σ, µ) a finite measure space.
Consider a constant Banach bundle Ω ×X and its liftable hull XΩ. We can prove
that the measurable Banach bundle XΩ have the S-property. Given two measurable
section f, g ∈ L0(µ,XΩ), there exists a measurable set A ∈ Σ, µ(Ω\A) = 0, such
that f(t), g(t) ∈ X for every t ∈ A. Then f1 := f |A : A → X and g1 := g|A :
A → X are Bochner µ-measurable vector-functions and the Banach space Y :=
span(f1(A) ∪ g1(A)) is separable and therefore has an M -basis. So, we can take a
measurable subbundle Yf,g of XΩ defined by Yf,g(t) := XΩ(t) ∩ Y .

Theorem 8.6. Let X be a liftable Banach bundle and with the S-property.
Suppose the set of step-sections St(X ) is norm dense in E(X ). Let T : E(X ) →
E(X ) be a linear continuous operator. The following statements are equivalent:

(1) T is a multiplication operator, i. e. there is g0 ∈ L∞(µ) such that T (f) = g0f
for all f ∈ E(X ).

(2) The equality T (g〈f, ϕ′〉ϕ) = g(〈T (f), ϕ′〉ϕ) holds for every g ∈ L∞(µ), f ∈
E(X ), ϕ ∈ L∞(µ, X ), and ϕ′ ∈ L∞(µ, X ′).

Remark 8.7. Theorem 8.6 is the main result of a forthcoming paper by M. A. Pli-
ev.

9. Desintegration

In this section we present a Strassen type desintegration result by E. K. Basaeva
and M. A. Pliev [5]. For desintegration in Dedekind complete vector lattices, see [78].

Definition 9.1. We say that a measurable Banach bundle X is separable, if
there exists a countable stalkwise dense set of measurable sections in L 0(µ, X ).

Let E be an ideal space over L0(Ω). Define

E(X ) := {v ∈ L0(Ω, Σ, µ, X ) : v ∈ E}.
It is known that E(X ) is bo-complete lattice normed space and L0(Ω,X ) is its
universal extension, see [64, Theorems 2.5.3 and 2.5.4(1)].

Proposition 9.2. Let (Ω, Σ, µ) be a measure space with the direct sum property,
X be a liftable Banach bundle over (Ω, Σ, µ) and F be a Banach space. Then there
exists a unique liftable Banach bundle Z over Ω, such that the stalk Z (ω) is a
subspace of L (X (ω), F ) for every ω ∈ Ω.

Let X be a liftable Banach bundle over (Ω, Σ, µ), E ⊂ L0(Ω, Σ, µ) an ideal space
and E ′ a Köthe dual of E, i. e.

E ′ =
{

e′ ∈ L0(Ω, Σ, µ) : (∀e ∈ E)

∫

Ω

|e′e| dµ(ω) < ∞
}

.

Hypotheses 9.3. Consider a family (Kω)ω∈Ω of continuous sublinear operators
Kω : Xω → E such that for every u ∈ E(X ) the vector-function ω 7→ Kω(u(ω)) :=
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K(ω, u(ω)) is Bochner measurable and the function ω 7→ ‖Kω‖ is dominated by
some measurable function from E ′. Then we can define a sublinear operator K :
E(X ) → F by

K(u) =

∫

Ω

K(ω, u(ω))dµ(ω) (u ∈ E(X )),

where the integral is considered as Bochner.
An explicit description of the subdifferential ∂K of K is an important problem

in convex analysis, see [78]. The first result of this kind for functionals on a sepa-
rable Banach space was given in a celebrated paper by Strassen [115, Theorem 1].
Generalisation of this result for the case of functionals defined on a space of Banach
sections is due to Kusraev [66].

Definition 9.4. Denote by
∫

Ω
∂Kωdµ(ω) the set of all linear operators from

E(X ) to F representable as

u 7→
∫

Ω

〈u(ω), u′(ω)〉dµ(ω),

where u′(·) is a measurable section in Z with u′(ω) ∈ ∂Kω for all ω ∈ Ω and
‖u′(·)‖ ∈ E ′. Let E(X )? stands for the set of all linear operators T : E(X ) →
L1(Ω, Σ, µ, F ) for which there exists an element e′ ∈ E ′ such that

|Tu| 6 e′‖u(·)‖ (u ∈ E(X )).

If X is a separable liftable Banach bundle then there is a convenient description
for the space E(X )?.

Proposition 9.5. If X is a separable liftable Banach bundle, then the space of
measurable sections E ′(Z ) and the space of operators E(X )? are linearly isometric.
The isometry is defined by assigning to measurable section v ∈ E ′(Z ) the operator
T : E(X ) → L1(Ω, Σ, µ, F ) given by Tv : u 7→ 〈u, v〉.

Given a family (Kω)ω∈Ω, we define an operator R : E(X ) → L1(Ω, Σ, µ, F ) by

Ru := π(K(ω, u(ω))) (u ∈ E(X )),

where π(g) is the equivalence class of measurable vector-function g. It is obvious
that R is a sublinear operator and ∂K =

∫
Ω

∂R dµ(ω).

Theorem 9.6. Let (Ω, Σ, µ) be a measure space with the direct sum property
and X be a separable liftable Banach bundle. Let the family of operators (Kω)ω∈Ω

is the same as in 9.3. Then the representation holds:

∂K =

∫

Ω

∂Kω dµ(ω).
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88. Lin, P.-K.: Köthe–Bochner Functions Spaces, Birkhäuser, Boston, 2004.
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ńık J.), Teubner, Leipzig, 1990, 127–148.

108. Pliev, M. A., Tabuev, S. N.: A Banach–Stone type theorem for Banach bundles (Russian),
Vestnik RUDN, Ser. Math. 3 (2010), 23–27.

109. Rockafellar, R. T.: Convex Analysis, Princeton Univ. Press, Princeton (1970).
110. Rubinov, A. M.: Monotonic analysis, Studies on Functional Anal. and Its Appl. (Eds.

Kusraev A. G., Tikhomirov V. M.), Nauka, Moscow, 2006, 167–214.
111. Schochetman I. E.: Kernels and Integral Operators for Continuous Sums of Banach Spaces,

Amer. Math. Soc., Providence, RI, 14(202) (1978).
112. Sunderesan, K.: Geometry of spaces of homogeneous polynomials on Banach lattices, Appl.

Geometry and Discrete Math., 571–586. (DIMACS Ser. Discrete Math. Theoret. Comput.
Sci., 4, Amer. Math. Soc., Providence, RI, 1991.)



References 39

113. Sitnik, S. M.: Refinements and generalizations of classical inequalities (Russian), In: Studies
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