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Vector Lattices: De�nition

De�nition. A Vector lattice (VL for short) is a real vector

space E equipped with a partial order ≤ for which there exist

X x ∨ y := sup{x , y}, the supremum,

X x ∧ y := inf{x , y}, the in�mum,

for all vectors x , y ∈ E and such that the positive cone

X E+ := {x ∈ E : x ≥ 0} of E has the properties

X E+ + E+ ⊂ E+, R+ · E+ ⊂ E+ (compatibility).

X The absolute value (modulus) is de�ned as |x | := x ∨ (−x).

De�nition. A VL E is called order complete if for any

∅ 6= A ⊂ E with A ⊂ [a, b] there exist sup(A) and inf(A).

Examples. C (K ), Lp(Ω,Σ, µ), lp (0 ≤ p ≤ ∞), c0, c .
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Positive Operators: De�nition and Examples

De�nition. An operator T ∈ L(E ,F ) is said to be positive if

T (E+) ⊂ F+, i. e. 0 ≤ x ∈ E =⇒ 0 ≤ Tx ∈ F .

Example. Let E ⊂ L0(Ω,Σ, µ), F ⊂ L0(Ω′,Σ′, µ′), and let

K ∈ L(E ,F ) be a kernel operator (with k ∈ L0(Ω× Ω′)):

(Kx)(s) =

∫
Ω
k(s, t)x(t) dµ(t) (x ∈ E ).

K ≥ 0 ⇐⇒ k(s, t) ≥ 0 for a. e. (s, t) ∈ Ω× Ω′.

Example. Let Mφ ∈ L(E ,E ) be a multiplication operator:

Mφx := φx (x ∈ E ) with φ ∈ L0(Ω,Σ, µ) .

Mφ ≥ 0 ⇐⇒ φ(s) ≥ 0 for a. e. s ∈ Ω.
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Notation

X Vector space.

E Vector lattice (Riesz space).

F , G Order complete vector lattices (Kantorovich spaces).

D Majorizing vector subspace of E .

D ⊂ E is majorizing⇐⇒ (∀ x ∈ E ) (∃y ∈ D) x ≤ y .

L(E ,F ) Vector space of all linear operators from E to F .

L+(E ,F ) Part of L(E ,F ) consisting of positive operators.

E(S) Collection of all positive extension of S : D → F to E :

E(S) := {R ∈ L(E ,F ) : R ≥ 0 and R|D = S}.

ext(Ω) Collection of extreme points of a convex set Ω:

R ∈ ext(Ω)⇐⇒ (∀R1,R2 ∈ Ω) (∀ 0 < α ∈ R)

R = αR1 + (1− α)R2 =⇒ R = R1 = R2.
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Extension of Positive Operators

Theorem (Kantorovich: 1937). If D is a majorizing vector

subspace of E and S : D → F is a positive operator, then S
has a positive linear extension to all of E ; in symbols,

E(S) 6= ∅.

Theorem (Lipecki, Plachky, and Thomsen; 1979)1. Under the

same assumptions a positive operator S admits extreme

extensions; in symbols,

ext(E(S)) 6= ∅.

Theorem (Lipecki, Plachky, and Thomsen; 1979)1. For an

operator R ∈ E(S) the following equivalence holds:

R ∈ ext(E(S))⇐⇒ (∀ x ∈ E ) inf{R(|x − y |) : y ∈ D} = 0.

1Lipecki, Z., Plachky, D. and Thomsen, W. Extension of Positive Operators
and Extreme Points. I, Colloquium Mathematicum, 42, (1979), 279�284.
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Main Result

De�nition. An operator T : F → G is said to be:

X interval preserving if T ([0, x ]) = [0,Tx ] for all x ∈ F+;

X order continuous if infα Txα = 0 in G for any xα ↓ 0 in F ;

X Maharam if T is order continuous and interval preserving;

X strictly positive whenever T (|x |) = 0 implies x = 0.

Theorem (Kusraev; 2024)2 Let S ∈ L+(D,F ) and T : F → G
be strictly positive Maharam operators. The following hold:

E(T ◦ S) = T ◦ E(S);

ext E(T ◦ S) ⊂ T ◦ ext E(S).

A very special case was obtained by Z. Lipecki3.

2Kusraev A. G. On Extreme Extension of Positive Operators, Vladikavkaz
Math. J. 26:3 (20024), 48�53.

3Lipecki, Z. Compactness and Extreme Points of the Set of Quasi-Measure
Extensions of a Quasi-Measure, Dissertationes Mathematicae, 493, 2013.
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Subdi�erentials: De�nition

Motivation:

X Lipecki's memoir3 on extensions of a given quasi-measure

X The authors article4 on disintegration in Kantorovich spaces.

De�nition. An operator P : X → E is said to be sublinear if

P(λx) = λP(x) for all x ∈ X and 0 ≤ λ ∈ R;

P(x + y) ≤ P(x) + P(y) for all x , y ∈ X .

Notation. Sbl(X ,E ) is the set of sublinear operators X → E .

De�nition. A support set or a subdi�erential (at zero) ∂P of a

sublinear operator P is de�ned as T ∈ ∂P ⇐⇒ T ≤ P :

∂P := {T ∈ L(X ,E ) : (∀x ∈ X ) Tx ≤ P(x)}

4A. G. Kusraev, Abstract disintegration in Kantorovich spaces, Sibirsk. Mat.
Zh., , 25:5 (1984), 79-89.
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Dominated Extension Property

De�nition. Say that E has the dominated extension property if

(∀X ) (∀X0) (∀T0) (∀P)

X0,X ∈ (VS)
X0 ⊂ X

T0 ∈ L(X0,E )
P ∈ Sbl(X ,E )
T0 ∈ ∂(P|X0)

 =⇒


(∃T )

T ∈ L(X ,E )
T |X0 = T0

T ∈ ∂P

Hahn�Banach�Kantorovich Theorem (Kantorovich; 1935).

Every Kantorovich space has the dominated extension property.

Theorem (Bonnice and Silverman, To; 1967, 1970).

If an ordered vector space has the dominated extension

property, then it is a Kantorovich space.
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Kre��n�Mil'man Theorem In Kantorovich Spaces

Lemma. Let S : L+(D,F ) de�ne a mapping PS : E → F as

PS(x) := inf{Sx ′ : x ′ ∈ D, x ≤ x ′} (x ∈ E ).

Then PS : E → F is a sublinear operator and ∂(PS) = E(S).

Hahn�Banach�Kantorovich =⇒ ∂(P) 6= ∅ =⇒ E(S) 6= ∅.

Theorem (Kutateladze; 1978)5 Every sublinear operator is the

upper envelope of the set of extreme points of its support set:

P(x) = sup{Tx : T ∈ ext(∂(P))} (x ∈ X ).

Kutateladze =⇒ ext(∂(P)) 6= ∅ =⇒ ext(E(S)) 6= ∅.

5Kutateladze, S. S. Extreme points of subdi�erentials, Dokl. Akad. Nauk
SSSR, vol. 242, no. 5 (1978), pp. 1001-1003.
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Strassen's Disintegration Theorem: Entourage

Strassen's seminal disintegration theorem was established in the

following environment:

X Separable Banach space.

(Ω,Σ, µ) Measure space with a complete �nite measure.

pω : X → R Continuous sublinear functional for all ω ∈ Ω.

ω 7→ pω(x) Integrable function for all x ∈ X .

ω 7→ ‖pω‖ := sup{|pω(x) : x ∈ X , ‖x‖ ≤ 1} Integrable.

Lemma. A sublinear function p : X → R is correctly de�ned by

p(x) :=

∫
Ω
pω(x) dµ(ω) (x ∈ X ).

Strassen's disintegration theorem gives a description of ∂(p).
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Strassen's Disintegration Theorem

Theorem (Strassen; 1965)6. For every x∗ ∈ ∂p there exists a

mapping Ω 3 ω 7→ x∗ω ∈ X ∗ such that the following hold:

(1) ω 7→ 〈x , x∗ω〉 ∈ L1(Ω,Σ, µ) for all x ∈ X ;

(2) x∗ω ∈ ∂pω for all (ω ∈ Ω);

(3) the representation holds:

〈x , x∗ω〉 =

∫
Ω
〈x , x∗ω〉 dµ(ω) (x ∈ X ).

Interpretation. De�ne Iµ : L1(µ)→ R and P : X → L1(µ) as

Iµ :=

∫
Ω
u(s)dµ(s), P(x) : ω 7→ pω(x)

Then the representations hold:

p = Iµ ◦ P, ∂(Iµ ◦ P) = Iµ ◦ ∂P.

6V. Strassen. The existence of probability measures with given marginals

Ann. Math. Stat., 36 (1965), 423�439.
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Abstract Desintegration: Examples

Theorem (Levin; 1972)7. If Φ ∈ L+(F ,R) is order continuous

and P : X → F is sublinear then the following holds:

∂(Φ ◦ P) = Φ ◦ ∂(P).

Theorem (Kutatelaze; 1979)8. If M := Mφ ∈ Orth+(F ) is a

multiplication operator and P ∈ Sbl(X ,F ) then we have:

∂(M ◦ P) = M ◦ ∂(P).

Theorem (Neumann; 1977)9. Let (Pα)α∈A be a pointwise

summable family in Sbl(X ,F ) and de�ne P(x) := (Pα)α∈A.
Put Σ : (fα)α∈A 7→

∑
α∈A fα for any (fα)α∈A ∈ l1(A,F ). Then

∂(Σ ◦ P) = Σ ◦ ∂(P).

7V. L. Levin. Subdi�erentials of convex mappings and of composite
functions, Siberian Math. J., 13:6 (1972), 903-909.

8S. S. Kutateladze, Russian Math. Surveys, 34:1 (1979), 181-214.
9M. Neumann. On the Strassen disintegration theorem, Arch. Math., 29:4

(1977), 413-420.
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Abstract Desintegration: General

Theorem (Kusraev; 1982)10 Let T : F → G be a Maharam

operator and let P : X → F be sublinear. Then

∂(T ◦ P) = T ◦ ∂(P).

There are a number of disintegration formulas that unify in a

conventional form of calculus, various facts of the theory of

Kantorovich spaces based on the Radon�Nikodym theorem 11

Is it true that ext ∂(T ◦ P) ⊂ T ◦ ext ∂(P) with P sublinear?

Mil'man Theorem (Kutateladze; 1980)12. If S ∈ L(Y ,X ) and

P ∈ Sbl(X ,F ), then the relation holds:

ext ∂(P ◦ S) ⊂ ext ∂(P) ◦ S .

10A. G. Kusraev. General disintegration formulas, Dokl. Akad. Nauk SSSR,
265:6 (1982), 1312-1316.

11A. G. Kusraev and S. S. Kutateladze, Subdi�erential Calculus. Theory and

Applications, Moscow: Nauka, 2007.
12S. S. Kutateladze, The Krein�Mil'man Theorem and Its Inverse, Siberian

Math. J., 21: 1 (1980), 97-103.
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Extreme points of a composition

Theorem. If P : X → F is a sublinear operator and T : F → G
is a Maharam operator, then the inclusion holds:

ext ∂(T ◦ P) ⊂ T ◦ ext ∂(P).

Theorem (Kutateladze; 1978)13. Let T ∈ L+(F ,G ) and

R ∈ ∂P with P : X → F sublinear. Then T ◦R ∈ ext ∂(T ◦P)
if and only if for any x ∈ X , y ∈ E the equality holds:

Ty+ = inf
{
T
(
(P(u)−Ru)∨(P(u−x)−R(u−x)+y)

)
: u ∈ X

}
.

In scalar case (F = G = R) this fact is known as the

Buck�Phelps theorem14.

13S. S. Kutateladze, Extreme points of subdi�erentials, Dokl. Akad. Nauk
SSSR, 242:5 (1978), 1001-1003.

14R. B. Holmes, Geometric Functional Analysis and Its Applications,
Springer-Verlag, Berlin etc., 1975.
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The End

Thank you for attention

A. G. Kusraev Extreme Extension of Positive Operators


