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Banach Lattices: De�nition

De�nition. A Banach lattice (BL for short) is a real Banach space
E equipped with a partial order ≤ for which there exist

X x ∨ y := sup{x , y}, the supremum,

X x ∧ y := inf{x , y}, the in�mum,

for all vectors x , y ∈ E and such that the positive cone

X E+ := {x ∈ E : x ≥ 0} of E have the properties

X E+ + E+ ⊂ E+, R+ · E+ ⊂ E+ (compartability),

and the order is connected to the norm by the condition that

X |x | ≤ |y | =⇒ ‖x‖ ≤ ‖y‖ for all x .y ∈ E (monotonicity),

where the absolute value (modulus) is de�ned as
X|x | := x ∨ (−x).

Banach lattices were �rst considered by Kantorovich in
L. V. Kantorovich, Mat. Sbornik, 2(44) (1937), 121-165.
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Banach Lattices: Examples

Example 1. C (K ), Lp(Ω,Σ, µ), lp (1 ≤ p ≤ ∞), c0, c .

De�nition. A vector subspace E ⊂ L0(Ω,Σ, µ) is said to be
an ideal (function) space over (Ω,Σ, µ), whenever

x ∈ E , y ∈ L0(Ω,Σ, µ), |y | ≤ |x | =⇒ y ∈ E .

Example 2. A norm complete ideal space with a monotonic
norm is a BL (Banach function space) over (Ω,Σ, µ).

De�nition. A BL E is order continuous
(
E ∈ (A)

)
if the

following (a kind of Dominated Convergence Theorem) holds:

xα ↓ 0 =⇒ ‖xα‖ → 0.

De�nition. A BL E is monotonically complete
(
E ∈ (B)

)
the

following (Levi property) holds:

0 ≤ xα ↑ 0 and ‖xα‖ ≤ 1 imply that sup xα exists in E .
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The Domination Problem

De�nition. Let S ,T : E → F be two operators between VL or
BL with S positive, i. e. x ≥ 0 implies Sx ≥ 0. We say that T
is dominated by S (called a dominant of T ) if

|T (x)| ≤ S(|x |) (x ∈ E ) (≡ |T | ≤ S).

In the sequel T is positive, so that 0 ≤ T ≤ S , that is,

0 ≤ Tx ≤ Sx for all x ∈ E+.

The Domination Problem (DP): Let P denotes a property
of a positive operator and P(E ,F ) stands for the set of
operators T : E → F having the property P. The DP then
asks whether or not the implication holds:

0 ≤ T ≤ S and S ∈ P(E ,F ) =⇒ T ∈ P(E ,F )?

General: What e�ect does an operator T : E → F have if its
dominant operator S : E → F has property P?
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The Domination Problem: Weakly Compact Operators

De�nition. An operator T ∈ L(E ,F ) is called weakly

compact, if the set T (BE ) is relatively weakly compact in F .

Let W(E ,F ) stands for the set of weakly compact operators.

A KB-space is a BL with (A) and (B): (KB) = (A) ∧ (B).

Theorem (Abramovich, 1972). Let E be a Banach lattice
and F be a KB-space. Then for every pair of positive linear
operators S ,T from E to F the the implication holds:

0 ≤ T ≤ S , S ∈ W(E ,F ) =⇒ T ∈ W(E ,F ).

Abramovich Y. A. Weakly compact sets in topological
Dedekind complete vector lattices, Teor. Funkcii Funkcional.
Anal. i Prilozhen. 15 (1972), 27�35.
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II. JOHN VON NEUMANN PROBLEM
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Paul Dirac and John von Neumann

Paul Adrien Maurice Dirac John von Neumann

(08.08.1902 � 20.10.1984) (28.12.1903 � 08.02.1957)
English mathematical and Hungarian and American

theoretical physicist mathematician and physicist
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John von Neumann vs Paul Dirac (1932)

Paul Dirac provides a very elegant and powerful formal
framework for quantum mechanics, in which a central role was
played by an �improper function�, the Dirac delta function,
which has the following incompatible properties: it is de�ned
over the real line, is zero everywhere except for one point at
which it is in�nite, and yields unity when integrated over the
real line.

John von Neumann promotes an alternative framework,
which is not merely a re�nement of Dirac's; rather, it is a
radically di�erent framework that is based on Hilbert's theory
of operators. He emphasized that Dirac's theory as being
powerful, clear, and uni�ed, but characterized the Dirac delta
function as a �mathematical �ction�.

Kusraev A. G. Vladikavkaz Science Center of the Russian Academy of Science, Vladikavkaz, RussiaOperators in Vector Lattices: Problems and Solutions



John von Neumann vs Paul Dirac (1932)

Paul Dirac provides a very elegant and powerful formal
framework for quantum mechanics, in which a central role was
played by an �improper function�, the Dirac delta function,
which has the following incompatible properties: it is de�ned
over the real line, is zero everywhere except for one point at
which it is in�nite, and yields unity when integrated over the
real line.

John von Neumann promotes an alternative framework,
which is not merely a re�nement of Dirac's; rather, it is a
radically di�erent framework that is based on Hilbert's theory
of operators. He emphasized that Dirac's theory as being
powerful, clear, and uni�ed, but characterized the Dirac delta
function as a �mathematical �ction�.

Kusraev A. G. Vladikavkaz Science Center of the Russian Academy of Science, Vladikavkaz, RussiaOperators in Vector Lattices: Problems and Solutions



Kernel (Integral) Operators: De�nition

De�nition. Let E ⊂ L0(Ω,Σ, µ), F ⊂ L0(Ω′,Σ′, µ′), and
K ∈ L(X ,Y ) is a kernel operator with kernel k ∈ L0(Ω× Ω′):

(Kx)(s) =

∫
Ω
k(s, t)x(t) dµ(t) (x ∈ E ).

Remarks.

X x : Ω→ R is measurable and the equivalence class x̃ ∈ E .

X
∫

Ω |k(s, t)x(t)| dµ(t) <∞ for a. e. s ∈ Ω.

X yx : s 7→
∫

Ω |k(s, t)x(t)| dµ(t) is measurable for all x̃ ∈ E .

X Kx = ỹx(·), the equivalence class of yx(·), belongs to F .

X K ≥ 0 ⇐⇒ k(s, t) ≥ 0 for a. e. (s, t) ∈ Ω× Ω′.
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John von Neumann Problem

John Von Neumann, Charakterisierung des Spektrums Eines
Integraloperators, Actualit�es Sci. et Ind., Paris, 1935, No. 229.

Which operators on an L2 space are induced by a kernel?

Which linear operators T : E → F between ideal function
spaces E ⊂ L0(Ω,Σ, µ) and F ⊂ L0(Ω′,Σ′, µ′) admit kernel
representation with kernels k ∈ L0(Ω× Ω′,Σ⊗ Σ′, µ⊗ µ′)?
Various interesting and useful su�cient conditions have been
found, but none of them is both necessary and su�cient.

Bukhvalov A. V. On integral representation of linear
operators, Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst.
Steklov. (LOMI) 47 (1974), 5�14.
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Convergence in Ideal Function Spaces

De�nition. A sequence (xn) in E is said to

converge pointwise (i. e., everywhere) to x ∈ E if

lim
n→∞

xn(ω) = x(ω)} = 0 for all ω ∈ Ω,

converge almost everywhere to x ∈ E if

µ
(
{ω ∈ Ω : lim

n→∞
xn(ω) 6= x(ω)}

)
= 0,

converge in measure to x ∈ E if (∀ ε > 0, A ∈ Σ), µ(A) <∞,

lim
n→∞

µ
(
{ω ∈ A : |xn(ω)− x(ω)| ≥ ε}

)
= 0.

Pointwise =⇒ Almost everywhere =⇒ In measure.

Theorem. If a sequence xn → x almost everywhere then there
exists a subsequence (xnk ) such that xn → x in measure.
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John von Neumann Problem: The solution

Theorem (Bukhvalov, 1984). Let E and F be ideal spaces
over σ-�nite measure spaces. Then for every positive linear
operator T : E → F the following are equivalent:

(1) T is a kernel operator.

(2) If a sequence (xn) in E with 0 ≤ xn ≤ x converges to zero
in measure, then T (xn) converges to zero almost everywhere.

Corollary. Assume E , F , and G are ideal function spaces and
at least one of the two operators T ∈ L∼σ (E ,F ) and
S ∈ L∼σ (F ,G ) is a kernel operator. Then the composition
S ◦ T : E → G is likewise a kernel operator.
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The Domination Problem: Kernel Operators

Notation. Given ideal function spaces E and F , denote:

L∼(E ,F ) the space of all regular operators;

L∼σ (E ,F ) the space of all order σ-continuous operators;

I(E ,F ) the space of all kernel operators.

Theorem (Lozanovski��, 1966). Let E and F be ideal
function spaces over σ-�nite measure spaces.
Then I(E ,F ) is a band in L∼σ (E ,F ).

Lozanovski�� G. Ya. On almost integral operators in
KB-spaces, Vestnik Leningrad Univ. Mat. Mekh. Astronom.,
No. 7, 35-44 (1966).

Kusraev A. G. Vladikavkaz Science Center of the Russian Academy of Science, Vladikavkaz, RussiaOperators in Vector Lattices: Problems and Solutions



The Domination Problem: Kernel Operators

Notation. Given ideal function spaces E and F , denote:

L∼(E ,F ) the space of all regular operators;

L∼σ (E ,F ) the space of all order σ-continuous operators;

I(E ,F ) the space of all kernel operators.

Theorem (Lozanovski��, 1966). Let E and F be ideal
function spaces over σ-�nite measure spaces.
Then I(E ,F ) is a band in L∼σ (E ,F ).

Lozanovski�� G. Ya. On almost integral operators in
KB-spaces, Vestnik Leningrad Univ. Mat. Mekh. Astronom.,
No. 7, 35-44 (1966).
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The Domination Problem: Kernel Operators

Corollary 1. Let E and F be ideal spaces over σ-�nite
measure spaces. Then for all order bounded linear operators
S ,T from E to F the the implication holds:

0 ≤ |T | ≤ S , S ∈ I(E ,F ) =⇒ T ∈ I(E ,F ).

Corollary 2. An operator T ∈ L∼(E ,F ) is a kernel operator if
and only if there exists 0 ≤ S ∈ I(E ,F ) such that |T | ≤ S .

Corollary 3. If an increasing sequence (Tn) in I(E ,F ) and
S ∈ L∼(E ,F ) are such that 0 ≤ Tn ≤ S , then the mapping T
de�ned as Tx := supn∈N Tnx (x ∈ E+) is a kernel operator.
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III. BARRY SIMON PROBLEM
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Barry Simon

Barry Simon, born 16.04.1946

known for his contributions
in spectral theory, functional analysis,
and nonrelativistic quantum mechanics
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Domination: Schr�odinger Operator

The Schr�odinger Operator with magnetic potential is:

H(a) := (i∇+ a)2 + V ,

a := (a1, . . . , am) : Rm → Rm is the magnetic potential,
V : Rm → R+ is the electric potential.

Further assumptions about a and V imply that e−H(a) is a self
adjoint operator in L2(Rm).

Simon's inequality: If H = H(0) = −∆ + V , with
∆ = −(i∇)2 being the Laplace operator, then

|e−tH(a)| ≤ etH = et(−∆+V ) (0 ≤ t ∈ R).

J. Avron, I. Herbst, B. Simon. Schr�odinger operators with
magnetic �elds. I. General interactions, Duke Math. J. 45(4)
(1978), 847�883.
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Schatten�von Neumann Classes

Theorem. Let T be a compact operator in a Hilbert space H.
There exist two orthonormal sequences (ek) and (uk) in H and
a sequence (sk) in R with 0 < sk = sk(T ), sk ↓, lim

n→∞
sn = 0,

Tx =
∞∑
k=1

sk(T )〈x , ek〉uk (x ∈ H).

De�nition. (sk(T ))k∈N is the sequence of s-numbers of T .
De�ne the Banach space (Sp(L2), ‖ · ‖p) (1 ≤ p <∞):

‖T‖p :=

( ∞∑
k=1

sk(T )p
) 1

p

≤ ∞
(
T ∈ Sp(L2)

)
.

Schatten-von Neumann classes Sp(H):
p = 1 S1(L2) ≡ Trace class operators;
p = 2 S2(L2) ≡ Hilbert-Schmidt operators;
p =∞ S∞(L2) ≡ Compact operators.
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Domination: Simon's Problem

Simon's problem: If S ,T ∈ L(L2), is it true that

|T | ≤ S and S ∈ Sp(L2) =⇒ T ∈ Sp(L2)?

B. Simon, Analysis with weak trace ideals and the number of
bounded states of Schr�odinger operators. Trans. Amer.Math.
Soc. 224(4) (1976), 367�380.

Yes, if p = 2n (n ∈ N) (B. Simon, 1976).

No, if 1 ≤ p <∞, p 6= 2n (V. V. Peller, 1980).

Yes, if p =∞ (P. Doods and D. Fremlin, 1979).

An application. If H has a compact resolvent then H(a) has
also a compact resolvent:

|(λI − H(a))−1| ≤ −((Reλ)I − H)−1 (Reλ < inf σ(H)).
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Compact Domination: Dodds�Fremlin Theorem

De�nition. An operator T ∈ L(E ,F ) is called compact, if the
set T (BE ) is relatively compact in F . Let K(E ,F ) stands for
the set of all compact operators in L(E ,F ).

Dodds�Fremlin Theorem. Let E and F be BL with E ′ ∈ (A)
and F ∈ (A). Then for any pair S ,T ∈ L(E ,F ) the the
implication holds:

0 ≤ T ≤ S , S ∈ K(E ,F ) =⇒ T ∈ K(E ,F ).

Peter Dodds, David Fremlin. Compact operators in Banach
lattices. Israel J. Math. 34(4) (1979), 287�320.
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Compact Domination: Wickstead Theorem

De�nition. A member a ∈ E+ is called an atom if
[0, a] = [0, 1]a. i. e., 0 ≤ b ≤ a implies that b = λa for some
0 ≤ λ ≤ 1. A Banach lattice is said to be atomic if every
members of E+ majorizes at least one nonzero atom.

Theorem (Wickstead, 1996). For every pair od Banach
lattices E and F the following assertions are equivalent:

(1) One of the following (non-exclusive) conditions holds:

X Both E ′ and F have an order continuous norm.

X F is an atomic BL with an order continuous norm.

X E ′ is an atomic BL with an order continuous norm.

(2) If S ,T : E → F , 0 ≤ S ≤ T , and T is compact then S is
compact.
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IV. WHAT NEXT?
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Another Domination Results

Operators
E → F

Restrictions Author(s) Year

Compact E ′,F ∈ (A)
complete

description

P.Dodds, D. Fremlin

A.W.Wickstead

1979

1996

Weakly compact F ∈ (KB)
E ′ ∈ (A) or F ∈ (A)

Y.A. Abramovich

A.W.Wickstead

1972

1981

AM-compact F ∈ (A) and

E ′ is discrete

B. Aqzzouz,

R. Nouira, L. Zraoula

2007

Dunford�Pettis F ∈ (A)
complete

description

N.Kalton, P. Saab

A.WWickstead

1985

1996

Disjointly strictly

singular

F ∈ (A) J. Flores,

F. L. Hern�andez

2001

Banach�Saks F ∈ (A) J. Flores, C. Ruiz 2006
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Another Domination Results

Operators
E → F

Restrictions Author(s) Year

Radon�

Nikod�ym

E ,F ∈ (P); F ∈ (A)
E ∈ (B), F ∈ (KB)

C. C. A. Labuschagne

A. G. Kusraev

2006

2011

Asplund E ∈ (P), E ′ ∈ (A)
E ′ ∈ (A)

C. C. A. Labuschagne

A. G. Kusraev

2006

2011

Strictly singular E ∈ (SSP) and

F ∈ (A)
J. Flores

F. L. Hern�andez

P. Tradacete

2008

Narrow E ,F ∈ (A) and E is

atomless

O.D.Maslynchenko

V. V.Mikhaylyuk

M.M.Popov

2009

p-Summing E and F are

of cotype 2

C. Parazuelos

E. A. S�anches-Perez

P. Tradacete

2010
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Open Problems: Multilinear Domination

De�nition. Let E1, . . . ,En è F be BL. A multilinear operator
S : E1 × . . .× En → F is called positive (in symbols S ≥ 0), if

0 ≤ x1 ∈ E1, . . . , 0 ≤ xn ∈ En =⇒ S(x1, . . . , xn).

Denote by L+(E1, . . . ,En;F ) the set of all positive multilinear
operators from E1 × . . .× En to F .

Problem 1. Let Φ(E1, . . . ,En;F ) denotes the set of positive
multilinear T : E1 × · · · × En → F with the property Φ. The
multilinear domination problem asks whether or not

0 ≤ S ≤ T and T ∈ Φ(E ,F ) =⇒ S ∈ Φ(E ,F )?
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Open Problems: Polynomial Domination

De�nition.Let E and F be Banach lattices. A map
P : E → F is called n-homogeneous polynomial if for some
symmetric n-linear operator P̌ : En → F we have

P(x) = P̌(x , . . . , x) (x ∈ E ).

(Such P̌ is unique). The polynomial P is said to be positive if

P̌(x1, . . . , xn) ≥ 0 for all x1, . . . , xn ∈ E+.

Denote by P+(nE ,F ) the set of all positive homogeneous
polynomials from E to F . Let P,Q ∈ P+(nE ,F ).

Problem 2. Let Φ(E ,F ) denotes the set of positive
homogeneous polynomials P : E → F with the property Φ.
The polynomial domination problem asks whether or not

0 ≤ Q ≤ P and P ∈ Φ(E ,F ) =⇒ Q ∈ Φ(E ,F )?
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Open Problems: Sublinear Domination

De�nition. An operator P : E → F is called sublinear, if

P(x + y) ≤ P(x) + P(y) (x , y ∈ E ),

P(λx) = λP(x) (λ ∈ R+; x , y ∈ E ),

and increasing if for all x , y ∈ E we have

x ≤ y =⇒ P(x) ≤ P(y).

Sbl+(E ,F ) is the set of increasing sublinear operators E → F .

De�nition. The support set ∂P of P is de�ned as:

∂P := {T ∈ L(E ,F ) : (∀x ∈ E )Tx ≤ P(x)}.

Proposition. If F is Dedekind complete, then:

P ∈ Sbl+(E ,F ) if and only if ∂P ⊂ L+(E ,F ).
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Open Problems: Sublinear Domination

Let Ψ stands for a property of an increasing sublinear operator
and let Ψ(E ,F ) denotes the set of all P ∈ Sbl+(E ,F ) with
the property Ψ.

Problem 3.The sublinear domination problem: Under what
conditions the implication holds:

P ∈ Ψ(E ,F ) =⇒ ∂P ⊂ Φ(E ,F )?

The properties Φ and Ψ may di�er but they are, of course,
correlated.
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THANK YOU FOR ATTENTION!
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