XIX th Vladikavkaz Mathematical Conference of Young Scientists

Operators in Vector Lattices: Problems and Solutions

Kusraev A. G. Vladikavkaz Science Center of the Russian Academy of Science, Vladikavkaz, Russia

June 27, 2024 / Vladikavkaz

I. INTRODUCTION

Kusraev A. G. Vladikavkaz Science Center of the Russian Operators in Vector Lattices: Problems and Solutions

Banach Lattices: Definition

Definition. A *Banach lattice* (BL for short) is a real Banach space E equipped with a partial order \leq for which there exist

$$\checkmark x \lor y := \sup\{x, y\}, \text{ the supremum,}$$

$$\checkmark x \land y := \inf\{x, y\}, \text{ the infimum,}$$

for all vectors $x, y \in E$ and such that the *positive cone*

✓
$$E_+ := \{x \in E : x \ge 0\}$$
 of E have the properties

✓
$$E_+ + E_+ \subset E_+$$
, $\mathbb{R}_+ \cdot E_+ \subset E_+$ (compartability),

and the order is connected to the norm by the condition that $\checkmark |x| \le |y| \implies ||x|| \le ||y||$ for all $x.y \in E$ (monotonicity), where the absolute value (modulus) is defined as $\checkmark |x| := x \lor (-x)$.

Banach lattices were first considered by Kantorovich in L. V. Kantorovich, Mat. Sbornik, 2(44) (1937), 121-165.

• Example 1. C(K), $L^p(\Omega, \Sigma, \mu)$, l^p $(1 \le p \le \infty)$, c_0 , c.

Kusraev A. G. Vladikavkaz Science Center of the Russian Operators in Vector Lattices: Problems and Solutions

< ∃ >

- Example 1. C(K), $L^p(\Omega, \Sigma, \mu)$, l^p $(1 \le p \le \infty)$, c_0 , c.
- Definition. A vector subspace E ⊂ L⁰(Ω, Σ, μ) is said to be an *ideal (function) space* over (Ω, Σ, μ), whenever

$$x \in E, y \in L^0(\Omega, \Sigma, \mu), |y| \le |x| \implies y \in E.$$

- Example 1. C(K), $L^p(\Omega, \Sigma, \mu)$, l^p $(1 \le p \le \infty)$, c_0 , c.
- Definition. A vector subspace E ⊂ L⁰(Ω, Σ, μ) is said to be an *ideal (function) space* over (Ω, Σ, μ), whenever

$$x \in E, y \in L^0(\Omega, \Sigma, \mu), |y| \le |x| \implies y \in E.$$

 Example 2. A norm complete ideal space with a monotonic norm is a BL (*Banach function space*) over (Ω, Σ, μ).

- Example 1. C(K), $L^p(\Omega, \Sigma, \mu)$, l^p $(1 \le p \le \infty)$, c_0 , c.
- Definition. A vector subspace E ⊂ L⁰(Ω, Σ, μ) is said to be an *ideal (function) space* over (Ω, Σ, μ), whenever

$$x \in E, y \in L^0(\Omega, \Sigma, \mu), |y| \le |x| \implies y \in E.$$

- Example 2. A norm complete ideal space with a monotonic norm is a BL (*Banach function space*) over (Ω, Σ, μ).
- Definition. A BL E is order continuous (E ∈ (A)) if the following (a kind of Dominated Convergence Theorem) holds:
 x_α ↓ 0 ⇒ ||x_α|| → 0.

- Example 1. C(K), $L^p(\Omega, \Sigma, \mu)$, l^p $(1 \le p \le \infty)$, c_0 , c.
- Definition. A vector subspace E ⊂ L⁰(Ω, Σ, μ) is said to be an *ideal (function) space* over (Ω, Σ, μ), whenever

$$x \in E, y \in L^0(\Omega, \Sigma, \mu), |y| \le |x| \implies y \in E.$$

- Example 2. A norm complete ideal space with a monotonic norm is a BL (*Banach function space*) over (Ω, Σ, μ).
- Definition. A BL E is order continuous (E ∈ (A)) if the following (a kind of Dominated Convergence Theorem) holds:
 x_α ↓ 0 ⇒ ||x_α|| → 0.
- **Definition**. A BL *E* is monotonically complete $(E \in (B))$ the following (Levi property) holds:

 $0 \le x_{\alpha} \uparrow 0$ and $||x_{\alpha}|| \le 1$ imply that sup x_{α} exists in E.

伺い イヨト イヨト

The Domination Problem

 Definition. Let S, T : E → F be two operators between VL or BL with S positive, i. e. x ≥ 0 implies Sx ≥ 0. We say that T is *dominated* by S (called a *dominant* of T) if

$$|T(x)| \leq S(|x|) \quad (x \in E) \quad (\equiv |T| \leq S).$$

In the sequel T is positive, so that $0 \leq T \leq S$, that is,

 $0 \leq Tx \leq Sx$ for all $x \in E_+$.

The Domination Problem

 Definition. Let S, T : E → F be two operators between VL or BL with S positive, i. e. x ≥ 0 implies Sx ≥ 0. We say that T is *dominated* by S (called a *dominant* of T) if

$$|T(x)| \leq S(|x|) \quad (x \in E) \quad (\equiv |T| \leq S).$$

In the sequel T is positive, so that $0 \leq T \leq S$, that is,

 $0 \leq Tx \leq Sx$ for all $x \in E_+$.

The Domination Problem (DP): Let *P* denotes a property of a positive operator and *P*(*E*, *F*) stands for the set of operators *T* : *E* → *F* having the property *P*. The DP then asks whether or not the implication holds:

 $0 \leq T \leq S$ and $S \in \mathcal{P}(E,F) \Longrightarrow T \in \mathcal{P}(E,F)$?

The Domination Problem

 Definition. Let S, T : E → F be two operators between VL or BL with S positive, i. e. x ≥ 0 implies Sx ≥ 0. We say that T is *dominated* by S (called a *dominant* of T) if

$$|T(x)| \leq S(|x|) \quad (x \in E) \quad (\equiv |T| \leq S).$$

In the sequel T is positive, so that $0 \leq T \leq S$, that is,

 $0 \leq Tx \leq Sx$ for all $x \in E_+$.

• The Domination Problem (DP): Let \mathcal{P} denotes a property of a positive operator and $\mathcal{P}(E, F)$ stands for the set of operators $T : E \to F$ having the property \mathcal{P} . The DP then asks whether or not the implication holds:

 $0 \leq T \leq S$ and $S \in \mathcal{P}(E, F) \Longrightarrow T \in \mathcal{P}(E, F)$?

General: What effect does an operator T : E → F have if its dominant operator S : E → F has property P?

- Definition. An operator $T \in \mathcal{L}(E, F)$ is called *weakly compact*, if the set $T(B_E)$ is relatively weakly compact in F.
- Let $\mathcal{W}(E, F)$ stands for the set of weakly compact operators.

- Definition. An operator T ∈ L(E, F) is called weakly compact, if the set T(B_E) is relatively weakly compact in F.
- Let $\mathcal{W}(E, F)$ stands for the set of weakly compact operators.
- A KB-space is a BL with (A) and (B): $(KB) = (A) \land (B)$.

- Definition. An operator T ∈ L(E, F) is called weakly compact, if the set T(B_E) is relatively weakly compact in F.
- Let $\mathcal{W}(E, F)$ stands for the set of weakly compact operators.
- A KB-space is a BL with (A) and (B): $(KB) = (A) \land (B)$.
- Theorem (Abramovich, 1972). Let *E* be a Banach lattice and *F* be a *KB*-space. Then for every pair of positive linear operators *S*, *T* from *E* to *F* the the implication holds:

$$0 \leq T \leq S, \ S \in \mathcal{W}(E,F) \Longrightarrow T \in \mathcal{W}(E,F).$$

- Definition. An operator $T \in \mathcal{L}(E, F)$ is called *weakly* compact, if the set $T(B_E)$ is relatively weakly compact in F.
- Let $\mathcal{W}(E, F)$ stands for the set of weakly compact operators.
- A KB-space is a BL with (A) and (B): $(KB) = (A) \land (B)$.
- Theorem (Abramovich, 1972). Let *E* be a Banach lattice and *F* be a *KB*-space. Then for every pair of positive linear operators *S*, *T* from *E* to *F* the the implication holds:

$$0 \leq T \leq S, \ S \in \mathcal{W}(E,F) \Longrightarrow T \in \mathcal{W}(E,F).$$

 Abramovich Y. A. Weakly compact sets in topological Dedekind complete vector lattices, Teor. Funkcii Funkcional. Anal. i Prilozhen. 15 (1972), 27–35.

II. JOHN VON NEUMANN PROBLEM

Kusraev A. G. Vladikavkaz Science Center of the Russian Operators in Vector Lattices: Problems and Solutions

▶ < 문 > < E >

Paul Dirac and John von Neumann

Paul Adrien Maurice Dirac (08.08.1902 - 20.10.1984) English mathematical and theoretical physicist John von Neumann (28.12.1903 – 08.02.1957) Hungarian and American mathematician and physicist

John von Neumann vs Paul Dirac (1932)

• Paul Dirac provides a very elegant and powerful formal framework for quantum mechanics, in which a central role was played by an "improper function", the Dirac delta function, which has the following incompatible properties: it is defined over the real line, is zero everywhere except for one point at which it is infinite, and yields unity when integrated over the real line.

John von Neumann vs Paul Dirac (1932)

- Paul Dirac provides a very elegant and powerful formal framework for quantum mechanics, in which a central role was played by an "improper function", the Dirac delta function, which has the following incompatible properties: it is defined over the real line, is zero everywhere except for one point at which it is infinite, and yields unity when integrated over the real line.
- John von Neumann promotes an alternative framework, which is not merely a refinement of Dirac's; rather, it is a radically different framework that is based on Hilbert's theory of operators. He emphasized that Dirac's theory as being powerful, clear, and unified, but characterized the Dirac delta function as a "mathematical fiction".

Kernel (Integral) Operators: Definition

• Definition. Let $E \subset L^0(\Omega, \Sigma, \mu)$, $F \subset L^0(\Omega', \Sigma', \mu')$, and $K \in L(X, Y)$ is a *kernel operator* with *kernel* $k \in L^0(\Omega \times \Omega')$:

$$(Kx)(s) = \int_{\Omega} k(s,t)x(t) d\mu(t) \quad (x \in E).$$

Kernel (Integral) Operators: Definition

• Definition. Let $E \subset L^0(\Omega, \Sigma, \mu)$, $F \subset L^0(\Omega', \Sigma', \mu')$, and $K \in L(X, Y)$ is a *kernel operator* with *kernel* $k \in L^0(\Omega \times \Omega')$:

$$(Kx)(s) = \int_{\Omega} k(s,t)x(t) d\mu(t) \quad (x \in E).$$

• Remarks.

✓ $x: \Omega \to \mathbb{R}$ is measurable and the equivalence class $\tilde{x} \in E$. ✓ $\int_{\Omega} |k(s,t)x(t)| d\mu(t) < \infty$ for a. e. $s \in \Omega$. ✓ $y_x: s \mapsto \int_{\Omega} |k(s,t)x(t)| d\mu(t)$ is measurable for all $\tilde{x} \in E$. ✓ $Kx = \widetilde{y_x(\cdot)}$, the equivalence class of $y_x(\cdot)$, belongs to F. ✓ $K \ge 0 \iff k(s,t) \ge 0$ for a. e. $(s,t) \in \Omega \times \Omega'$. • John Von Neumann, Charakterisierung des Spektrums Eines Integraloperators, Actualités Sci. et Ind., Paris, 1935, No. 229.

John von Neumann Problem

- John Von Neumann, Charakterisierung des Spektrums Eines Integraloperators, Actualités Sci. et Ind., Paris, 1935, No. 229.
- Which operators on an L² space are induced by a kernel?
- Which linear operators $T : E \to F$ between ideal function spaces $E \subset L^0(\Omega, \Sigma, \mu)$ and $F \subset L^0(\Omega', \Sigma', \mu')$ admit kernel representation with kernels $k \in L^0(\Omega \times \Omega', \Sigma \otimes \Sigma', \mu \otimes \mu')$?

John von Neumann Problem

- John Von Neumann, Charakterisierung des Spektrums Eines Integraloperators, Actualités Sci. et Ind., Paris, 1935, No. 229.
- Which operators on an L² space are induced by a kernel?
- Which linear operators T : E → F between ideal function spaces E ⊂ L⁰(Ω, Σ, μ) and F ⊂ L⁰(Ω', Σ', μ') admit kernel representation with kernels k ∈ L⁰(Ω × Ω', Σ ⊗ Σ', μ ⊗ μ')?
- Various interesting and useful sufficient conditions have been found, but none of them is both necessary and sufficient.

John von Neumann Problem

- John Von Neumann, Charakterisierung des Spektrums Eines Integraloperators, Actualités Sci. et Ind., Paris, 1935, No. 229.
- Which operators on an L² space are induced by a kernel?
- Which linear operators $T : E \to F$ between ideal function spaces $E \subset L^0(\Omega, \Sigma, \mu)$ and $F \subset L^0(\Omega', \Sigma', \mu')$ admit kernel representation with kernels $k \in L^0(\Omega \times \Omega', \Sigma \otimes \Sigma', \mu \otimes \mu')$?
- Various interesting and useful sufficient conditions have been found, but none of them is both necessary and sufficient.
- Bukhvalov A. V. On integral representation of linear operators, Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Steklov. (LOMI) 47 (1974), 5–14.

Convergence in Ideal Function Spaces

 Definition. A sequence (x_n) in E is said to converge pointwise (i.e., everywhere) to x ∈ E if
 lim x_n(ω) = x(ω)} = 0 for all ω ∈ Ω,
 converge almost everywhere to x ∈ E if
 μ({ω ∈ Ω : lim x_n(ω) ≠ x(ω)}) = 0,
 converge in measure to x ∈ E if (∀ε > 0, A ∈ Σ), μ(A) < ∞,
 lim μ({ω ∈ A : |x_n(ω) - x(ω)| ≥ ε}) = 0.

Convergence in Ideal Function Spaces

 Definition. A sequence (x_n) in E is said to converge pointwise (i. e., everywhere) to x ∈ E if
 lim x_n(ω) = x(ω)} = 0 for all ω ∈ Ω,
 converge almost everywhere to x ∈ E if
 μ({ω ∈ Ω : lim x_n(ω) ≠ x(ω)}) = 0,
 converge in measure to x ∈ E if (∀ε > 0, A ∈ Σ), μ(A) < ∞,
 lim μ({ω ∈ A : |x_n(ω) - x(ω)| ≥ ε}) = 0.

● Pointwise ⇒ Almost everywhere ⇒ In measure.

Convergence in Ideal Function Spaces

 Definition. A sequence (x_n) in E is said to converge pointwise (i.e., everywhere) to x ∈ E if

$$\lim_{n o\infty}x_n(\omega)=x(\omega)\}=0$$
 for all $\omega\in\Omega$,

converge almost everywhere to $x \in E$ if

1

$$\muig(\{\omega\in\Omega:\ \lim_{n o\infty}x_n(\omega)
eq x(\omega)\}ig)=0,$$

converge in measure to $x \in E$ if $(\forall \varepsilon > 0, A \in \Sigma)$, $\mu(A) < \infty$,

$$\lim_{n\to\infty}\mu\big(\{\omega\in A: |x_n(\omega)-x(\omega)|\geq\varepsilon\}\big)=0.$$

- Pointwise \implies Almost everywhere \implies In measure.
- Theorem. If a sequence $x_n \to x$ almost everywhere then there exists a subsequence (x_{n_k}) such that $x_n \to x$ in measure.

John von Neumann Problem: The solution

• Theorem (Bukhvalov, 1984). Let E and F be ideal spaces over σ -finite measure spaces. Then for every positive linear operator $T : E \to F$ the following are equivalent:

(1) T is a kernel operator.

(2) If a sequence (x_n) in E with $0 \le x_n \le x$ converges to zero in measure, then $T(x_n)$ converges to zero almost everywhere.

John von Neumann Problem: The solution

• Theorem (Bukhvalov, 1984). Let E and F be ideal spaces over σ -finite measure spaces. Then for every positive linear operator $T : E \to F$ the following are equivalent:

(1) T is a kernel operator.

(2) If a sequence (x_n) in E with $0 \le x_n \le x$ converges to zero in measure, then $T(x_n)$ converges to zero almost everywhere.

• Corollary. Assume E, F, and G are ideal function spaces and at least one of the two operators $T \in \mathcal{L}^{\sim}_{\sigma}(E, F)$ and $S \in \mathcal{L}^{\sim}_{\sigma}(F, G)$ is a kernel operator. Then the composition $S \circ T : E \to G$ is likewise a kernel operator.

• Notation. Given ideal function spaces E and F, denote: $\mathcal{L}^{\sim}(E,F)$ the space of all regular operators; $\mathcal{L}^{\sim}_{\sigma}(E,F)$ the space of all order σ -continuous operators; $\mathcal{I}(E,F)$ the space of all kernel operators.

- Notation. Given ideal function spaces E and F, denote: $\mathcal{L}^{\sim}(E,F)$ the space of all regular operators; $\mathcal{L}^{\sim}_{\sigma}(E,F)$ the space of all order σ -continuous operators; $\mathcal{I}(E,F)$ the space of all kernel operators.
- Theorem (Lozanovskiĭ, 1966). Let E and F be ideal function spaces over σ-finite measure spaces. Then *I*(E, F) is a band in L[~]_σ(E, F).

- Notation. Given ideal function spaces E and F, denote: $\mathcal{L}^{\sim}(E,F)$ the space of all regular operators; $\mathcal{L}^{\sim}_{\sigma}(E,F)$ the space of all order σ -continuous operators; $\mathcal{I}(E,F)$ the space of all kernel operators.
- Theorem (Lozanovskiĭ, 1966). Let E and F be ideal function spaces over σ-finite measure spaces. Then *I*(E, F) is a band in L[~]_σ(E, F).
- Lozanovskii G. Ya. On almost integral operators in KB-spaces, Vestnik Leningrad Univ. Mat. Mekh. Astronom., No. 7, 35-44 (1966).

 Corollary 1. Let E and F be ideal spaces over σ-finite measure spaces. Then for all order bounded linear operators S, T from E to F the the implication holds:

 $0 \leq |T| \leq S, S \in \mathcal{I}(E,F) \Longrightarrow T \in \mathcal{I}(E,F).$

 Corollary 1. Let E and F be ideal spaces over σ-finite measure spaces. Then for all order bounded linear operators S, T from E to F the the implication holds:

$$0 \leq |T| \leq S, \ S \in \mathcal{I}(E,F) \Longrightarrow T \in \mathcal{I}(E,F).$$

 Corollary 2. An operator T ∈ L[~](E, F) is a kernel operator if and only if there exists 0 ≤ S ∈ I(E, F) such that |T| ≤ S. Corollary 1. Let E and F be ideal spaces over σ-finite measure spaces. Then for all order bounded linear operators S, T from E to F the the implication holds:

$$0 \leq |T| \leq S, \ S \in \mathcal{I}(E,F) \Longrightarrow T \in \mathcal{I}(E,F).$$

- Corollary 2. An operator T ∈ L[~](E, F) is a kernel operator if and only if there exists 0 ≤ S ∈ I(E, F) such that |T| ≤ S.
- Corollary 3. If an increasing sequence (T_n) in I(E, F) and S ∈ L[~](E, F) are such that 0 ≤ T_n ≤ S, then the mapping T defined as Tx := sup_{n∈N} T_nx (x ∈ E₊) is a kernel operator.

III. BARRY SIMON PROBLEM

Kusraev A. G. Vladikavkaz Science Center of the Russian Operators in Vector Lattices: Problems and Solutions

< 注 > < 注

Barry Simon

Barry Simon, born 16.04.1946

known for his contributions in spectral theory, functional analysis, and nonrelativistic quantum mechanics

• The Schrödinger Operator with magnetic potential is:

$$H(\mathbf{a}) := (i\nabla + \mathbf{a})^2 + V,$$

 $\mathbf{a} := (a_1, \dots, a_m) : \mathbb{R}^m \to \mathbb{R}^m$ is the magnetic potential, $V : \mathbb{R}^m \to \mathbb{R}_+$ is the electric potential.

• The Schrödinger Operator with magnetic potential is:

$$H(\mathbf{a}) := (i\nabla + \mathbf{a})^2 + V,$$

 $\mathbf{a} := (a_1, \dots, a_m) : \mathbb{R}^m \to \mathbb{R}^m$ is the magnetic potential, $V : \mathbb{R}^m \to \mathbb{R}_+$ is the electric potential.

• Further assumptions about **a** and V imply that $e^{-H(a)}$ is a self adjoint operator in $L^2(\mathbb{R}^m)$.

• The Schrödinger Operator with magnetic potential is:

$$H(\mathbf{a}) := (i\nabla + \mathbf{a})^2 + V,$$

 $\mathbf{a} := (a_1, \dots, a_m) : \mathbb{R}^m \to \mathbb{R}^m$ is the magnetic potential, $V : \mathbb{R}^m \to \mathbb{R}_+$ is the electric potential.

- Further assumptions about **a** and V imply that $e^{-H(a)}$ is a self adjoint operator in $L^2(\mathbb{R}^m)$.
- Simon's inequality: If $H = H(0) = -\Delta + V$, with $\Delta = -(i\nabla)^2$ being the Laplace operator, then

$$|e^{-t\mathcal{H}(\mathbf{a})}| \leq e^{t\mathcal{H}} = e^{t(-\Delta+V)} \quad (0 \leq t \in \mathbb{R}).$$

• The Schrödinger Operator with magnetic potential is:

$$H(\mathbf{a}) := (i\nabla + \mathbf{a})^2 + V,$$

 $\mathbf{a} := (a_1, \dots, a_m) : \mathbb{R}^m \to \mathbb{R}^m$ is the magnetic potential, $V : \mathbb{R}^m \to \mathbb{R}_+$ is the electric potential.

- Further assumptions about **a** and V imply that $e^{-H(a)}$ is a self adjoint operator in $L^2(\mathbb{R}^m)$.
- Simon's inequality: If $H = H(0) = -\Delta + V$, with $\Delta = -(i\nabla)^2$ being the Laplace operator, then

$$|e^{-tH(\mathbf{a})}| \leq e^{tH} = e^{t(-\Delta+V)} \quad (0 \leq t \in \mathbb{R}).$$

 J. Avron, I. Herbst, B. Simon. Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J. 45(4) (1978), 847-883.

Schatten-von Neumann Classes

• Theorem. Let T be a compact operator in a Hilbert space H. There exist two orthonormal sequences (e_k) and (u_k) in H and a sequence (s_k) in \mathbb{R} with $0 < s_k = s_k(T)$, $s_k \downarrow$, $\lim_{n \to \infty} s_n = 0$,

$$Tx = \sum_{k=1}^{\infty} s_k(T) \langle x, e_k \rangle u_k \quad (x \in H).$$

Schatten-von Neumann Classes

• Theorem. Let T be a compact operator in a Hilbert space H. There exist two orthonormal sequences (e_k) and (u_k) in H and a sequence (s_k) in \mathbb{R} with $0 < s_k = s_k(T)$, $s_k \downarrow$, $\lim_{n \to \infty} s_n = 0$,

$$Tx = \sum_{k=1}^{\infty} s_k(T) \langle x, e_k \rangle u_k \quad (x \in H).$$

• Definition. $(s_k(T))_{k \in \mathbb{N}}$ is the sequence of s-numbers of T. Define the Banach space $(\mathfrak{S}_p(L^2), \|\cdot\|_p)$ $(1 \le p < \infty)$:

$$\|T\|_{p} := \left(\sum_{k=1}^{\infty} s_{k}(T)^{p}\right)^{\frac{1}{p}} \leq \infty \quad \left(T \in \mathfrak{S}_{p}(L^{2})\right)$$

Schatten-von Neumann Classes

• Theorem. Let T be a compact operator in a Hilbert space H. There exist two orthonormal sequences (e_k) and (u_k) in H and a sequence (s_k) in \mathbb{R} with $0 < s_k = s_k(T)$, $s_k \downarrow$, $\lim_{n \to \infty} s_n = 0$,

$$Tx = \sum_{k=1}^{\infty} s_k(T) \langle x, e_k \rangle u_k \quad (x \in H).$$

 Definition. (s_k(T))_{k∈ℕ} is the sequence of s-numbers of T. Define the Banach space (𝔅_p(L²), || · ||_p) (1 ≤ p < ∞):

$$\|T\|_{p} := \left(\sum_{k=1}^{\infty} s_{k}(T)^{p}\right)^{\frac{1}{p}} \leq \infty \quad \left(T \in \mathfrak{S}_{p}(L^{2})\right).$$

• Schatten-von Neumann classes $\mathfrak{S}_p(H)$:

$$\begin{array}{ll} p=1 & \mathfrak{S}_1(L^2) \equiv \text{Trace class operators;} \\ p=2 & \mathfrak{S}_2(L^2) \equiv \text{Hilbert-Schmidt operators;} \\ p=\infty & \mathfrak{S}_{\infty}(L^2) \equiv \text{Compact operators.} \end{array}$$

• Simon's problem: If $S, T \in \mathcal{L}(L^2)$, is it true that

$$|\mathcal{T}| \leq S$$
 and $S \in \mathfrak{S}_p(L^2) \Longrightarrow \mathcal{T} \in \mathfrak{S}_p(L^2)$?

• Simon's problem: If $S, T \in \mathcal{L}(L^2)$, is it true that

$$|\mathcal{T}| \leq S$$
 and $S \in \mathfrak{S}_p(L^2) \Longrightarrow \mathcal{T} \in \mathfrak{S}_p(L^2)$?

 B. Simon, Analysis with weak trace ideals and the number of bounded states of Schrödinger operators. Trans. Amer.Math. Soc. 224(4) (1976), 367–380.

• Simon's problem: If $S, T \in \mathcal{L}(L^2)$, is it true that

$$|\mathcal{T}| \leq S$$
 and $S \in \mathfrak{S}_p(L^2) \Longrightarrow \mathcal{T} \in \mathfrak{S}_p(L^2)$?

- B. Simon, Analysis with weak trace ideals and the number of bounded states of Schrödinger operators. Trans. Amer.Math. Soc. 224(4) (1976), 367–380.
- Yes, if p = 2n $(n \in \mathbb{N})$ (B. Simon, 1976).
- No, if $1 \le p < \infty$, $p \ne 2n$ (V. V. Peller, 1980).
- Yes, if $p = \infty$ (P. Doods and D. Fremlin, 1979).

• Simon's problem: If $S, T \in \mathcal{L}(L^2)$, is it true that

$$|\mathcal{T}| \leq S$$
 and $S \in \mathfrak{S}_p(L^2) \Longrightarrow \mathcal{T} \in \mathfrak{S}_p(L^2)$?

- B. Simon, Analysis with weak trace ideals and the number of bounded states of Schrödinger operators. Trans. Amer.Math. Soc. 224(4) (1976), 367–380.
- Yes, if p = 2n $(n \in \mathbb{N})$ (B. Simon, 1976).
- No, if $1 \le p < \infty$, $p \ne 2n$ (V. V. Peller, 1980).
- Yes, if $p = \infty$ (P. Doods and D. Fremlin, 1979).
- An application. If *H* has a compact resolvent then *H*(**a**) has also a compact resolvent:

$$|(\lambda I - H(\mathbf{a}))^{-1}| \leq -((\operatorname{\mathsf{Re}}\lambda)I - H)^{-1} \quad (\operatorname{\mathsf{Re}}\lambda < \inf \sigma(H)).$$

Compact Domination: Dodds-Fremlin Theorem

Definition. An operator T ∈ L(E, F) is called *compact*, if the set T(B_E) is relatively compact in F. Let K(E, F) stands for the set of all compact operators in L(E, F).

Compact Domination: Dodds-Fremlin Theorem

- Definition. An operator T ∈ L(E, F) is called *compact*, if the set T(B_E) is relatively compact in F. Let K(E, F) stands for the set of all compact operators in L(E, F).
- Dodds-Fremlin Theorem. Let E and F be BL with E' ∈ (A) and F ∈ (A). Then for any pair S, T ∈ L(E, F) the the implication holds:

$$0 \leq T \leq S, \ S \in \mathcal{K}(E,F) \Longrightarrow T \in \mathcal{K}(E,F).$$

Compact Domination: Dodds-Fremlin Theorem

- Definition. An operator T ∈ L(E, F) is called *compact*, if the set T(B_E) is relatively compact in F. Let K(E, F) stands for the set of all compact operators in L(E, F).
- Dodds-Fremlin Theorem. Let E and F be BL with E' ∈ (A) and F ∈ (A). Then for any pair S, T ∈ L(E, F) the the implication holds:

$$0 \leq T \leq S, \ S \in \mathcal{K}(E,F) \Longrightarrow T \in \mathcal{K}(E,F).$$

• Peter Dodds, David Fremlin. Compact operators in Banach lattices. Israel J. Math. **34**(4) (1979), 287–320.

Compact Domination: Wickstead Theorem

Definition. A member a ∈ E₊ is called an atom if
 [0, a] = [0, 1]a. i. e., 0 ≤ b ≤ a implies that b = λa for some
 0 ≤ λ ≤ 1. A Banach lattice is said to be atomic if every
 members of E₊ majorizes at least one nonzero atom.

Compact Domination: Wickstead Theorem

- Definition. A member a ∈ E₊ is called an atom if
 [0, a] = [0, 1]a. i. e., 0 ≤ b ≤ a implies that b = λa for some
 0 ≤ λ ≤ 1. A Banach lattice is said to be atomic if every
 members of E₊ majorizes at least one nonzero atom.
- Theorem (Wickstead, 1996). For every pair od Banach lattices *E* and *F* the following assertions are equivalent:
 - (1) One of the following (non-exclusive) conditions holds:
 - ✓ Both E' and F have an order continuous norm.
 - \checkmark F is an atomic BL with an order continuous norm.

✓ E' is an atomic BL with an order continuous norm. (2) If $S, T : E \to F$, $0 \le S \le T$, and T is compact then S is compact.

b) a (B) b) a (B) b)

IV. WHAT NEXT?

Kusraev A. G. Vladikavkaz Science Center of the Russian Operators in Vector Lattices: Problems and Solutions

→ < 프 > < 프 >

< 口 > < 同

Operators $E \rightarrow F$	Restrictions	Author(s)	Year
Compact	$E', F \in (A)$	P. Dodds, D. Fremlin	1979
	complete	A. W. Wickstead	1996
	description		
Weakly compact	$F \in (KB)$	Y.A. Abramovich	1972
	$E' \in (A)$ or $F \in (A)$	A. W. Wickstead	1981
AM-compact	$F \in (A)$ and	B. Aqzzouz,	2007
	E' is discrete	R. Nouira, L. Zraoula	
Dunford–Pettis	$F \in (A)$	N. Kalton, P. Saab	1985
	complete	A. W Wickstead	1996
	description		
Disjointly strictly	$F \in (A)$	J. Flores,	2001
singular		F.L.Hernández	
Banach–Saks	$F \in (A)$	J. Flores, C. Ruiz	2006

Kusraev A. G. Vladikavkaz Science Center of the Russian Operators in Vector Lattices: Problems and Solutions

< 注 → < 注 →

Operators $E \rightarrow F$	Restrictions	Author(s)	Year
Radon-	$E, F \in (P); F \in (A)$	C.C.A.Labuschagne	2006
Nikodým	$E \in (B), F \in (KB)$	A. G. Kusraev	2011
Asplund	$E \in (P), E' \in (A)$	C.C.A.Labuschagne	2006
	$E' \in (A)$	A. G. Kusraev	2011
Strictly singular	$E \in (SSP)$ and	J. Flores	2008
	$F \in (A)$	F. L. Hernández	
		P. Tradacete	
Narrow	$E, F \in (A)$ and E is	O. D. Maslynchenko	2009
	atomless	V.V. Mikhaylyuk	
		M. M. Popov	
<i>p</i> -Summing	E and F are	C. Parazuelos	2010
	of cotype 2	E. A. Sánches-Perez	
		P. Tradacete	

(문) (문

• Definition. Let E_1, \ldots, E_n is F be BL. A multilinear operator $S: E_1 \times \ldots \times E_n \to F$ is called *positive* (in symbols $S \ge 0$), if

 $0 \leq x_1 \in E_1, \ldots, 0 \leq x_n \in E_n \implies S(x_1, \ldots, x_n).$

• Definition. Let E_1, \ldots, E_n is F be BL. A multilinear operator $S: E_1 \times \ldots \times E_n \to F$ is called *positive* (in symbols $S \ge 0$), if

 $0 \leq x_1 \in E_1, \ldots, 0 \leq x_n \in E_n \implies S(x_1, \ldots, x_n).$

Denote by L₊(E₁,..., E_n; F) the set of all positive multilinear operators from E₁ × ... × E_n to F.

• Definition. Let E_1, \ldots, E_n is F be BL. A multilinear operator $S: E_1 \times \ldots \times E_n \to F$ is called *positive* (in symbols $S \ge 0$), if

 $0 \leq x_1 \in E_1, \ldots, 0 \leq x_n \in E_n \implies S(x_1, \ldots, x_n).$

- Denote by L₊(E₁,..., E_n; F) the set of all positive multilinear operators from E₁ × ... × E_n to F.
- Problem 1. Let Φ(E₁,..., E_n; F) denotes the set of positive multilinear T : E₁ ×···× E_n → F with the property Φ. The multilinear domination problem asks whether or not

$$0 \leq S \leq T$$
 and $T \in \Phi(E, F) \Longrightarrow S \in \Phi(E, F)$?

Open Problems: Polynomial Domination

 Definition.Let E and F be Banach lattices. A map P : E → F is called *n-homogeneous polynomial* if for some symmetric *n*-linear operator Ď : Eⁿ → F we have

$$P(x) = \check{P}(x, \ldots, x) \quad (x \in E).$$

(Such \check{P} is unique). The polynomial P is said to be *positive* if

 $\check{P}(x_1,\ldots,x_n)\geq 0$ for all $x_1,\ldots,x_n\in E_+.$

Open Problems: Polynomial Domination

 Definition.Let E and F be Banach lattices. A map P : E → F is called *n-homogeneous polynomial* if for some symmetric *n*-linear operator Ď : Eⁿ → F we have

$$P(x) = \check{P}(x, \ldots, x) \quad (x \in E).$$

(Such \check{P} is unique). The polynomial P is said to be *positive* if

 $\check{P}(x_1,\ldots,x_n)\geq 0$ for all $x_1,\ldots,x_n\in E_+.$

Denote by P⁺(ⁿE, F) the set of all positive homogeneous polynomials from E to F. Let P, Q ∈ P⁺(ⁿE, F).

Open Problems: Polynomial Domination

 Definition.Let E and F be Banach lattices. A map P: E → F is called *n-homogeneous polynomial* if for some symmetric *n*-linear operator Ď: Eⁿ → F we have

$$P(x) = \check{P}(x, \ldots, x) \quad (x \in E).$$

(Such \check{P} is unique). The polynomial P is said to be *positive* if

 $\check{P}(x_1,\ldots,x_n)\geq 0$ for all $x_1,\ldots,x_n\in E_+.$

- Denote by P⁺(ⁿE, F) the set of all positive homogeneous polynomials from E to F. Let P, Q ∈ P⁺(ⁿE, F).
- Problem 2. Let Φ(E, F) denotes the set of positive homogeneous polynomials P : E → F with the property Φ. The polynomial domination problem asks whether or not

$$0 \leq Q \leq P$$
 and $P \in \Phi(E, F) \Longrightarrow Q \in \Phi(E, F)$?

• **Definition.** An operator $P: E \rightarrow F$ is called *sublinear*, if

$$\begin{split} P(x+y) &\leq P(x) + P(y) \quad (x,y \in E), \\ P(\lambda x) &= \lambda P(x) \quad (\lambda \in \mathbb{R}_+; \ x,y \in E), \end{split}$$

and *increasing* if for all $x, y \in E$ we have

$$x \leq y \implies P(x) \leq P(y).$$

• **Definition.** An operator $P: E \rightarrow F$ is called *sublinear*, if

$$\begin{split} P(x+y) &\leq P(x) + P(y) \quad (x,y \in E), \\ P(\lambda x) &= \lambda P(x) \quad (\lambda \in \mathbb{R}_+; \; x,y \in E), \end{split}$$

and *increasing* if for all $x, y \in E$ we have

$$x \leq y \implies P(x) \leq P(y).$$

• Sbl⁺(E, F) is the set of increasing sublinear operators $E \to F$.

• **Definition.** An operator $P: E \rightarrow F$ is called *sublinear*, if

$$\begin{split} P(x+y) &\leq P(x) + P(y) \quad (x,y \in E), \\ P(\lambda x) &= \lambda P(x) \quad (\lambda \in \mathbb{R}_+; \ x,y \in E), \end{split}$$

and *increasing* if for all $x, y \in E$ we have

$$x \leq y \implies P(x) \leq P(y).$$

• $\mathsf{Sbl}^+(E,F)$ is the set of increasing sublinear operators $E \to F$.

• **Definition.** The support set ∂P of P is defined as:

$$\partial P := \{T \in L(E,F) : (\forall x \in E) Tx \le P(x)\}.$$

• **Definition.** An operator $P: E \rightarrow F$ is called *sublinear*, if

$$\begin{split} P(x+y) &\leq P(x) + P(y) \quad (x,y \in E), \\ P(\lambda x) &= \lambda P(x) \quad (\lambda \in \mathbb{R}_+; \ x,y \in E), \end{split}$$

and *increasing* if for all $x, y \in E$ we have

$$x \leq y \implies P(x) \leq P(y).$$

- Sbl⁺(E, F) is the set of increasing sublinear operators $E \to F$.
- **Definition.** The support set ∂P of P is defined as:

$$\partial P := \{T \in L(E,F) : (\forall x \in E) Tx \le P(x)\}.$$

• **Proposition.** If F is Dedekind complete, then:

$$\mathsf{P}\in\mathsf{Sbl}^+(\mathsf{E},\mathsf{F})$$
 if and only if $\partial\mathsf{P}\subset\mathsf{L}^+(\mathsf{E},\mathsf{F}).$

 Let Ψ stands for a property of an increasing sublinear operator and let Ψ(E, F) denotes the set of all P ∈ Sbl⁺(E, F) with the property Ψ.

- Let Ψ stands for a property of an increasing sublinear operator and let Ψ(E, F) denotes the set of all P ∈ Sbl⁺(E, F) with the property Ψ.
- **Problem 3.** The *sublinear domination problem:* Under what conditions the implication holds:

$$P \in \Psi(E,F) \implies \partial P \subset \Phi(E,F)?$$

The properties Φ and Ψ may differ but they are, of course, correlated.

THANK YOU FOR ATTENTION!

Kusraev A. G. Vladikavkaz Science Center of the Russian Operators in Vector Lattices: Problems and Solutions

★ 문 ► ★ 문