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1. INTRODUCTION

The Boolean valued approach is a machinery of studying properties of an arbitrary
mathematical object by means of comparison between its representations in two
different set-theoretic models whose construction utilizes distinct Boolean algebras.
As these models, one usually takes the classical sets in the shape of the von Neumann
universe V and a specially-trimmed Boolean valued universe V® over a complete
Boolean algebra B in which the conventional set-theoretic concepts and propositions
acquire nonstandard interpretations.

A general scheme of applying the Boolean valued approach is as follows, see
[24, 25]. Assume that X C V and X C V® are two classes of mathematical
objects, respectively external and internal with respect to a Boolean valued model
V®) over a complete Boolean algebra B. Suppose we are able to prove the following

Boolean Valued Representation Result: Every external X € X embeds into
a Boolean valued model V(®) becoming an internal object .2~ € X.

Boolean Valued Transfer Principle then tells us that every theorem about 2
within Zermelo-Fraenkel set theory ZFC has its counterpart for the original object
X interpreted as a Boolean valued object 2~ within V(®.

Boolean Valued Machinery enables us to perform some translation of theorems
from 2 € VB to X € V making use of appropriate general operations and the
principles of Boolean valued models.

The aim of this work is to demonstrate the power of the Boolean valued approach
by treating the well-known Wickstead problem from the operator theory in vector
lattices as well as to present some new results. The reader can find the necessary
information on the theory of vector lattices in [1, 7|; Boolean valued analysis, in [8,
24]; field theory, in [11, 35|; functional equations in |6, 20|. We let := denote the
assignment by definition, while N, QQ, R, and C symbolize the naturals, the rationals,
the reals, and the complexes.

2. ANALYSIS: THE WICKSTEAD PROBLEM

Consider an arbitrary vector lattice E whose positive cone is denoted by E,. Two
elements z,y € E are said to be disjoint (in symbols x L y) whenever |z| A |y| = 0.
The disjoint complement of a nonempty set M C E is defined as M+ := {z €
E: (Vy € M) xz 1L y} and the notation M+ := (M+)1 is also in use. A set of
the form M= is called a band. The inclusion ordered set B(E) of all bands in E is
a complete Boolean algebra. A band B of E satisfying E = B ® B* is referred to as
a projection band, while the associated projection (onto B parallel to B*) is called
a band projection. Let P(E) stand for the Boolean algebra of all band projections
in E. Say that E has the projection property if every band of E admits a band
projection. In this event the Boolean algebras B(E) and P(E) are isomorphic. The
definitions and properties of complex vector lattice and complex f-algebra used
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below may be found in Abramovich and Aliprantis |1, Section 3.2], Meyer-Nieberg
[28, Section 2.2|, Schaefer [31, Chap. II, Section 11|, and Zaanen [34, Sections 91
and 92|.

Proposition 1. For a linear operator T' : E — E the following conditions are
equivalent:

(1) Tax € {z}** forallz € E.

(2) L y implies Tx L y for all x,y € E.

(3) T(K) C K for each band K of E.

If E has the projection property then (1)—(3) are equivalen to
(4) moT =T o for all band projections w in E.

DEFINITION 1. An operator T is called band preserving if one (and then any) of
the conditions (1)—(4) is fulfilled and order bounded if T' sends every order bounded
set into an order bounded set.

DEFINITION 2. A vector lattice F is said to be a Wickstead lattice if each band
preserving linear operator in F is automatically order bounded.

Problem. Describe the class of Wickstead lattices.

In its full generality, the Wicksted problem is still unsettled, while it is very
well understood for universally complete vector lattices. Therefore, we restrict our
discussion to this class of vector lattices.

DEFINITION 3. A vector lattice F is said to be Dedekind complete (respectively,
laterally complete) whenever every non-empty order bounded set (respectively, every
set of pairwise disjoint positive vectors) has a supremum. A vector lattice that is at
the same time laterally complete and Dedekind complete is referred to as universally
complete.

DEFINITION 4. A vector lattice X is locally one-dimensional® if for every two
nondisjoint x1,z9 € X there exist nonzero components u; and us of z; and zs
respectively such that u; and uy are proportional (see also Definition 11 below).

DEFINITION 5. An element x € FE, is called locally constant with respect to
e € By if ¥ = supgcz Aemee for some numeric family (\¢)ecz and a family (m¢)ee=
of pairwise disjoint band projections in P(F). Recall also that e € E, is a (weak)
order unit if {e}+ = {0} or, equivalently, {e}*+ = E.

Proposition 2. For each universally complete vector lattice E' the following
conditions are equivalent:

(1) E is locally one-dimensional.
(2) All elements of E, are locally constant with respect to a fixed order unit.

(3) All elements of E are locally constant with respect to every order unit.

IThe term locally one-dimensional is in use in Gutman [17], Kusraev and Kutateladze [21, 25], McPolin and
Wickstead [27], while the term in Abramovich and Kitover [2] used for such spaces is essentially one-dimensional.
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3. HISTORICAL COMMENTS

The Wickstead problem was raised in [33] in 1977.2 Soon afterward (in 1978),
Abramovich, Veksler, and Koldunov [3, Theorem 1] announced the first example
of a non order bounded band preserving linear operator. Later, it was clarified
that the situation described in the paper is typical in a sense. The following result
was established by Abramovich, Veksler, and Koldunov in [4, Theorem 2.1| and by
McPolin and Wickstead in |27, Theorem 3.2].

Theorem 1. All band preserving operators in a universally complete vector
lattice are automatically order bounded if and only if this vector lattice is locally
one-dimensional.

This claim can be considered as a solution to the Wickstead problem. But the new
notion of locally one-dimensional vector lattice crept into the answer. The novelty of
this notion led to the conjecture that it coincides with that of a discrete (= atomic)
vector lattice. In 1981 Abramovich, Veksler, and Koldunov [4, Theorem 2.1]
gave a proof for existence of an order unbounded band preserving operator in
every nondiscrete universally complete vector lattice, thus seemingly corroborating
the conjecture that a locally one-dimensional vector lattice is discrete. But
the proof was erroneous. Later, in 1985, McPolin and Wickstead [27, Section 3]
gave an example of a nondiscrete locally one-dimensional vector lattice, confuting
the conjecture. But again there was an error in the example. Finally, Wickstead [5]
stated the conjecture as an open problem in 1993.

There was a similar misunderstanding in Boolean valued analysis. In a Boolean
valued universe V® over a complete Boolean algebra B there exist the internal real
numbers object # and the standard real numbers object R". It seemed plausible
that the equation R" = % holds only for atomic Boolean algebras B.

The problems were solved in 1995 by Gutman [17]: He constructed an atomless
Dedekind complete locally one-dimensional vector lattice. Moreover, Gutman gave
a purely algebraic description of locally one dimensional universally complete vector
lattices. In more details, a universally complete vector lattice E is a Wickstead
lattice if and only if B := P(F) is a o-distributive Boolean algebra if and only if
R* = % within V&),

In 2004 Kusraev in [22] developed a Boolean valued approach to band preserving
operators and Wickstead problem which revealed some new interconnections and
possibilities. For example, the construction of an order unbounded band preserving
operator can be carried out inside an appropriate Boolean valued universe by using
a Hamel basis of the reals % considered as a vector space over its subfield R"
(cp. |24, 25]). In particular, using a Hamel basis, one can construct an internal
discontinuous R"-linear function in % which gives an external order unbounded
band preserving linear operator in any universally complete vector lattice E with
P(E) = B. Similar constructions can be carried out on using a transcendence basis
instead of a Hamel basis. This approach yielded new characterizations of universally

2In the early 2000s A.I. Veksler informed me that this problem has been formulated earlier by G.Y.Lozanovskii
in Leningrad mathematical seminars.
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complete vector lattices with o-distributive base in terms of narrower classes of band
preserving linear operators, namely, of derivations and automorphisms [23].

It should be also mentioned that the Wickstead problem admits different answers
depending on the spaces in which the operators in question are considered. There are
several results that guarantee automatic boundedness for a band preserving operator
in the particular classes of vector lattices. According to Abramovich, Veksler, and
Koldunov [4, Theorem 2.1] (see also [3, 4]) every band preserving operator from
a Banach lattice to a normed vector lattice is bounded. This claim remains valid if
the Banach lattice of departure is replaced by a relatively uniformly complete vector
lattice [4]. In McPolin and Wickstead [27] a similar result is obtained for the band
preserving operators in a relatively uniformly complete vector lattice endowed with
a locally convex locally solid topology.

Versions of the Wickstead problem can be seen in |25, §4.14].

4. ANALYSIS: FUNCTIONAL EQUATIONS

The classical Cauchy functional equation (CFE, for short) is the equation
fla+y)=f@)+ fly) (z,y €R), (1)

where f is an unknown function f : R — R which is assumed to satisfy (1) for all
x,y € R. The solutions to CFE are called additive functions.

Proposition 3. The solution set of the CFE coincides with the set of all
endomorphisms of R considered as a vector space over Q.

In particular, each additive function f : R — R satisfies obviously also

flrz) =rf(z) (reQ, zeR).

Therefore, it is interesting to examine a more general situation. Let F stand for
either R or C and let P be a subfield of F. In case F = C we assume ¢ € P so that
Q + 2Q is a subfield of P. Denote by Fp the field F considered as a vector space
over P. Consider now the simultaneous functional equations

flx+y) = flz)+ f(y),
f(pz) = pf(x)

with p € P and z,y € F. Clearly, the solutions to the simultaneous equations (L) are
precisely P-linear functions from Fp to Fp. The following two results were obtaind
by Hamel in 1905 for P = Q.

Theorem 2. Let & be a Hamel basis for a vector space Fp, and let % (&, F)
be the space of all functions from & to F. The solution set of (L) is a vector space
over F isomorphic to % (&, ). Such an isomorphism can be implemented by sending
a solution f to the restriction f|g of f to &. The solution f is continuous if and only
if f(x)/x = const (xz € &).

Theorem 3. If F # P, then there exist discontinuous solutions of (L). In parti-
cular, there exist discontinuous solutions to CFE.

(L)
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<1 The assumption F # P implies that each Hamel basis & for the vector space
Fp contains at least two nonzero distinct elements eq,es € &. Define the function
T : & — F so that 7(ey)/e1 # 7(ez)/es (for example, 7(&) C Q). Then the P-
linear function f = f, : F — I, coinciding with 7 on &, exists and is discontinuous
by Theorem 2. >

Corollary 1. If F and P are as above, then F = P if and only if each linear
function from Fp to Fp sends bounded sets into bounded sets.

5. ALGEBRA: DERIVATIONS AND ENDOMORPHISMS OF FIELDS

Consider two more systems of functional equations (with z,y € F and p € P):

(flz+y) = f(z)+ f(y),

f(pz) = pf (), (A)
| f(zy) = f(x)f(y),

(fla+y) = f)+ fy),

f(pr) = pf(z), (D)
| f(zy) = f(x)y +2f(y).

DEFINITION 6. The solutions of (A) are called P-endomorphisms of F, while the
solutions of (D) are named P-derivations of F. A bijective P-endomorphisms are
called P-automorphisms of F. The identity automorphism and the zero derivation
are conventionally called trivial.

For examining the systems (A) and (D) more subtle tool than Hamel basis,
namely a transcendence basis, is needed (see the proof of Theorem 5 below). By
Steinitz Theorem each extension IF of a field IP has a transcendence basis & over K.
In this event F is an algebraic extension of the pure extension P(&) of K, see
Bourbaki [11, Chapter 5, Section 5, Theorem 1].

Theorem 4. Let F be a field of characteristic zero, P a subfield of F, &
a transcendental base of IF over P, if it exists, and & = & otherwise. If d : P — F
is a derivation and ¢ : & — F is an arbitrary function, then there exists a unique
derivation D : F — F with D|p = d and D|s = ¢.

< See [11, Chap. V, §9, Propositions 4 and 5|, [20, Theorem 14.2.1]. >

Theorem 5. Let C be an extension of an algebraically closed subfield P = Py+1iP,
with Py a subfield of R. Then the following are equivalent:

(1) P =C.
(

2)
(3) Every P-endomorphism of C is the zero or the identity function.
4)

(
< If P = C then every P-linear function f : C — C is of the form f(z) =
cz (z € C) for some ¢ € C; therefore (1) = (2) and (1) = (3) trivially. The
implication (3) = (4) is evident. If f is multiplicative then ¢* = ¢ and hence ¢ = 0

There is no nontrivial P-derivation of C.

There is no nontrivial P-automorphism of C.
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or ¢ = 1, whence (1) = (4) and (1) = (5). Prove (3) = (1). Given a mapping
d: & — C, Theorem 4 yields a unique derivation Dy : P(&) — C with Dy(e) = d(e)
(e € &). Since C is an algebraic extension of P(&’), we may apply Theorem 4 again
and find a unique extension of Dy to some derivation D : C — C. The freedom in
the choice of d guarantees that D is nontrivial. The implication (4) = (1) can be
proved in a similar way making use of the isomorphism extension theorem (see |11,
Chap. V, §6, Proposition 1]) instead of Theorem 4. >

6. ALGEBRA: 0-DISTRIBUTIVE BOOLEAN ALGEBRAS

Denote ®:= N i.e., ® stands for the set of all mappings ¢ : N — N.

DEFINITION 7. A o-complete Boolean algebra B is said to be o-distributive if for
every double sequence (b, )nmen in B we have [32]:

VA b= AV b,

neNmeN ped neN

EXAMPLES. (1) The powerset algebra &?(A) with nonempty A is o-distributive.
Moreover, #(A) is completely distributive, i.e., the above equation holds for ®:=
AP for arbitrary nonempty A and B.

(2) Let (€2, %, 1) be a measure space with the direct sum property (see |21, 1.1.7
and 1.1.8]). The Boolean algebra B:= B(2, X, 1) of measurable sets modulo p-neg-
ligible sets is o-distributive if and only if B is atomic, or, equivalently, p is atomic.
In this event B is isomorphic to Z(A) for some nonempty A [19, 5.3.3].

(3) Let B be the powerset Z?(N) modulo finite sets, that is B:= #(N)/.# where
# is the ideal of finite subsets of N. Then the Dedekind completion of B is an
atomless o-distributive Boolean algebra [17].

The following result is due to Gutman [17].

Theorem 6. The following assertions hold:

(1) The vector lattice L°:= L°(Q2, %, u) is atomic (or equivalently, the measure
is atomic) if and only if P(L°) is o-distributive.

(2) There exists an atomless o-distributive complete Boolean algebra.

< Follows from the examples (2) and (3). >

7. LoGic: BOOLEAN VALUED MODELS

Let B be a complete Boolean algebra. The Boolean valued universe V® is defined
by recursion on a € On

«

v = {z: (38 €a) z: dom(z) - B, dom(z) ¢ V],

V® .= U . V®  (On is the class of all ordinals).

For making statements about V® take a formula ¢ = o(uy, ..., u,) of the language
of set theory (= ZFC) and replace the variables us, ..., u, by elements z,...,x, €
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V® . Then ¢(z1,...,x,) is a statement about 1, ..., z,. To verify whether or not
©(x1,...,7,) is true within VB there is a natural way of assigning to each such
statement an element [o(z1,...,x,)] € B which acts as the ‘Boolean truth-value’ of
¢(x1,...,7,) in the universe V® . We say that the statement (1, ..., ,) is valid
within V® and write V® = o(xy, ..., z,) if [p(2,...,2,)] = 1.

Theorem 7 (Transfer Principle). All theorems of Zermelo—Fraenkel set theory
with choice (ZFC, for short) are true within V® . More precisely, if ¢(uy, ..., u,)
is a theorem of ZFC then “[p(xy,...,x,)] = 1 for all xy,...,z, € V®” is also
a theorem of ZFC.

Given an arbitrary X € V® we define the descent X| as the set X|:= {x €
VB : [z € X] = 1}. Assume that XY, f, P € V® are such that [f : X —
Y] =1 and [P C X?] = 1, i.e., f is a mapping from X to Y and P is a binary
relation on X within V®, Then f| is a unique mapping from X | to Y| for which
[fi(z) = f(z)] = 1 (x € X|) and PJ is a unique binary relation on X with
(x1,29) € P} <= [(x1,22) € P] = 1. The descent of an algebraic structure is the
descent of an underlying set endowed with the descended operations and relations.

The ascent is a transformation acting in the reverse direction, i.e., sending
any subset X C V® into an element X1 € V®. One more important these
transformation is the canonical embedding X — X" of the class of standard sets
(= von Neumann universe) V into a Boolean valued universe V®) . Ascent, descent,

and canonical embedding enables one to perform an interaction between V and V(&)
see [8, 24].

8. LoGic: BOOLEAN VALUED NUMBERS

Let # and % stand respectively for the fields of reals and complexes within
VB e, Z:= (R,®,0,0,1,2) and [p(#)] = 1, where ¢(Z#) is the conjunction
of axioms of the reals, while € = % + 1#. Consider the descent R := Z| of the
algebraic structure % within V® . In other words, R := (R}, ®],®},< ,0,1) is
considered as the descent RJ of the underlying set R together with the descended
operations @ and @] and the descended order relation < | of the structure Z. By
definition, €| := Z| + i%#|.

The following fundamental result due to Gordon [14] tells us that the
interpretation of reals (complexes) in a Boolean valued model V® is a universally
complete real (complex) vector lattice with the Boolean algebra of band projections
isomorphic to B.

Theorem 8. The algebraic structure % (respectively, €) with the descended
operations and order relation is a universally complete real (respectively, complex)
vector lattice and a semiprime f-algebra with a ring and order unit 1 := 1".
Moreover, within V®  R* and C" are dense subfields of # and €, respectively.

The following result is due to Gutman [17].

Theorem 9. Let B be a complete Boolean algebra and € the field of complexes
within V®). The following assertions are equivalent:
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(1) B is o-distributive.
(2) VB =2 = R".
(3) #/ is locally one-dimensional.

REMARK 1. Since the relations Z = R" and € = C" are equivalent within V®,
Theorem 9 implies that B is o-distributive if and only if V® =% = C* if and only
if € is a locally one-dimensional universally complete vector lattice.

9. AN INTERACTION

DEFINITION 8. Let A be an algebra over a field P. A P-linear operator D from
a subalgebra Ay to A is called a P-derivation (real derivation or complex derivation
if P = R or P = C, respectively) provided that D(uv) = D(u)v + uD(v) for all
u,v € Ag. A nonzero derivation is referred as nontrivial.

DEFINITION 9. A P-endomorphism of an algebra A is a P-linear multiplicative
operator M : A — A, i.e., A is P-linear and satisfies the equation M (uv) =
M (u)M (v) for all u,v € A. A bijective P-endomorphism is a P-automorphism. The
identical automorphism is commonly referred to as the trivial automorphism. If
P =R or P = C then we speak of real or complex automorphisms.

Let G be a real universally complete vector lattice with a fixed f-algebra
multiplication and X an f-subalgebra of G.

Proposition 4. Let D be a linear operator from X¢:= X ©1X to Ge:= G ®iG
and D = Dy +iD,. Then D is a complex derivation if and only if D; and D, are
real derivations from X into G. If X+ = G then each derivation from X¢ into G¢
is a band preserving operator.

Proposition 5. An order bounded derivation and an order bounded band
preserving automorphism of a universally complete f-ring G¢ are trivial.

Consider two internal objects, the elements of V®): the sets of all C"-derivations
PDcn(€) and all C*-endomorphisms .#Zcr(€') of €. Define also two external objects:
Let 2(%1) be the set of all complex derivations on the f-algebra €] and let .#;,(¢))
be the set of all complex band preserving endomorphisms of €.

Theorem 10. Assume 7 € V® is an internal derivation (automorphism), that
is, T € Dcn(€)] (respectively, T € Mcr(€))). Then there exists a unique complex
derivation T € P(€ ) (respectively, band preserving automorphism T € #,(€))
such that [t(x) = T'(z)] = 1 for allx € €. The correspondence T <+ T is a bijection
between Pcr(€)| and 2(€) as well as between Mcr(€) and My, (€ ).

Theorem 10 reduces the study of derivations and band preserving endomorphisms
of a universally complete vector lattice respectively to that of the solution sets of
simultaneous functional equations (D) and (A) with F = ¢ and P = C".

10. THE RESULTS

Interpreting Theorem 5 and Corollary 1 in an appropriate Boolean valued model
and combining Gordon’s theorem with Theorems 7-10 yields the following:
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Theorem 11. Let X be a real universally complete vector lattice, X¢:= X &
iX, B:= P(X), while Z and € be the fields respectively of reals and complexes
within V® . The following assertions are equivalent:

(1) X is a Wickstead lattice.
2
3
4

B is o-distributive.
V® =% = R".
VE® =g = C".

5) X is locally one-dimensional.

7

8) X¢ has no nontrivial derivation.

X has no nontrivial derivation.

(2)
(3)
(4)
(5)
(6) Xc is locally one-dimensional.
(7)
(8)
(9)

9) X¢ has no nontrivial band preserving automorphism.
(10) Band preserving endomorphisms of X¢ are precisely band projections.

< The equivalence of (1)—(6) follows from Theorems 1 and 9. By Transfer
Principle, Theorem 5 is true within V® with C:= € and P := C", so that we
have within V® (taking into account that C" is algebraically closed in %, see [25,
Theoem 4.12.1])

¢ =C" «— Den (cg) = {O} < %C/\(Cg) = {0,]%//}

By Transfer Principle, Theorem 10 is true within V®, consequently, ¥ = C" is
equivalent to both (%)) = {0} and .#,,(¢1) = {0, I, }. Using Gordon’s theorem
we can replace €] by Xc. It follows that (6) = (8) and (6) = (10). Similarly,
(6) = (8). The converse implications as well as (9) <= (10) are trivial. >

DEFINITION 10. A derivation D (respectively, an automorphism A) on X is called
essentially nontrivial provided that 7D = 0 (respectively, TA = nlx) imply 7 = 0
for every band projection m € P(X).

Corollary 2. Let (Q2,%,u) be an atomless Maharam measure space and
L2(, %, u) the space of all (cosets of) measurable complex-valued functions on Q.
Then the following hold:

(1) There exists an essentially nontrivial C-derivation on L(Q, %, p).

(2) There exists an essentially nontrivial band preserving automorphism of
Le(2. 2, ).

< This is immediate from Theorem 6 (1) and Theorem 11 (5,6). >

REMARK 2. (1) The equivalences (4) <= (5) <= (6) <= (7) in Theorem 11
and Corollary 2 are due to Kusraev [23]. Detailed presentation of these results as
well as other interesting properties of band preserving operators can be found in
Kusraev and Kutatelsdze [25, Chap. 4].

(2) Ber, Chilin, and Sukochev [9] proved independently that the algebra L2 ([0, 1])
admits nontrivial derivations. Some extensions of this result and interesting related
questions are discussed in Ber, de Pagter, and Sukochev [10].
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(3) It is well known that if @) is a compact space then there are no nontrivial
derivations on the algebra C(Q,C) of complex-valued continuous functions on @,
see Aczél and Dhombres [6, Chapter 19, Theorem 21]. At the same time, we see
from Theorem 11 that if () is an extremally disconnected compact space and the
Boolean algebra of the clopen sets of () is not o-distributive then there is a nontrivial
derivation on C(Q, C).

(4) Using the same arguments as above, we can infer that in the class of universally
complete real vector lattices with a fixed structure of an f-algebra the absence of
nontrivial derivations is equivalent to the o-distributivity of the Boolean algebra of
bands of the algebra under consideration. At the same time there are no nontrivial
band preserving automorphisms of the f-algebra Z|.

11. VARIATIONS ON THE THEME

A. Homogeneity rings of additive operators. Let K be a ring with an
identity 1 # 0 and M, L two unitary K-modules. Then, for any additive mapping
f:M — L, theset Hf :={a € K : f(ax) = af(x) for all x € M} forms a subring
of K, the homogeneity ring of f. It is proved by Rétz [30] that, for M # {0}, L # {0}
and any subring S of K for which M is a free S-module, there exists an additive
mapping f : M — L such that Hy = S. In particular, the following is true:

Proposition 6. If F is an arbitrary subfield of R then there exists an additive
function f : R — R such that Hy = F.

Consider an f-algebra A. Given an additive operator S : A — A, define the
homogeneity set Hg C A of S as Hg:={a € A: S(ax) = aSz for all x € A}. Then
Hg is evidently a subring of A and our problem is to examine what subrings of A
have the form Hg for some additive operator S in A?

DEFINITION 11. Let E be a vector lattice and z € E. An element y € E is called
a component of x if |y| A|x —y| = 0. The collection of all components of x is denoted
by €(x). A subspace Xy of X is component-wise closed if, for each x € Xy, the set
¢(x) is contained in Xj.

DEFINITION 12. An annihilator ideal of K is a subset of the form S+:= {k € K :
(Vs € S) ks =0} with a nonempty subset S C K. A subset S of K is called dense
provided that S+ = {0}; i.e., the equality k-S:= {k-s: s € S} = {0} implies k = 0
for all £k € K. A ring K is said to be rationally complete whenever, to each dense
ideal J C K and each group homomorphism h : J — K such that h(kz) = kh(z)
for all k € K and x € J, there is an element r in K with h(z) = ra for all x € J.

Observe that K is rationally complete if and only if the complete ring of quotients
Q(K) is isomorphic to K canonically, see Lambek |26, §2.3]. The following result is
due to Gordon |15, 16].

Theorem 12. If ¥ is a field within V® then .# | is a rationally complete
semiprime ring, and there is an isomorphism x of B onto the Boolean algebra A(J¢ "))
of the annihilator ideals of % | such that

b<[r=0] <= zex(b") (re€K, beB).
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Conversely, if K is a rationally complete semiprime ring and B stands for the Boolean
algebra A(K) of all annihilator ideals of K, then there is an internal field # € V®
such that the ring K is isomorphic to ¢ .

< See |24, Theorem 8.3.1| and [24, Theorem 8.3.2]. >

Theorem 13. Let A be a universally complete semiprime f-algebra and let K
be a componentwise closed rationally complete subring of A with A = K++. Then
there exists a band preserving additive operator S in A such that Hg = K.

< By Gordon’s theorem we can assume that A = Z|. Our assumptions that K
is componentwise closed in A and A = K+ imply that K is an f-subalgebra and
the mapping B — BN K is a Boolean isomorphism of B(A) onto B(K'). Recall that
the annihilator ideals in a commutative semiprime ring R form a complete Boolean
algebra A(R), see [26, § 2.4, Proposition 2|. Since A and K are semiprime f-algebras,
we have A(K) = B(K) and A(A) = B(A). By Theorem 12, there exists a subfield
F C # within V® such that K = .#|. The Transfer Principle (Theorem 7)
guarantees that Proposition 6 is true within V®), so that there exists an additive
function o : # — % with H, = .%. Put S:= 0| and note that Hg = H,|. It follows
that HS =K. >

B. Band preserving linear isomorphisms. Abramovich and Kitover raised
the question in [2, p. 1, Problem B| as to whether the vector lattices E and F are
lattice isomorphic whenever there exists a linear disjointness preserving operator
T : E — F such that 77! is also disjointness preserving? A negative answer was
given in the same work, see [2, Theorem 13.4]. Below we demonstrate that this
problem has a negative solution even in the class of band preserving operators.

Proposition 7. Let P be a proper subfield of R. There exists a P-linear subspace
Z in R such that 2" and R are isomorphic vector spaces over P but they are not
isomorphic as ordered vector spaces over PP.

< Recall that the real field R has no proper subfield of which it is a finite
extension; see, for example, Coppel [13, Lemma 17]. It follows that R is an infinite
dimensional vector space over the field P. Let & be a Hamel basis of a P-vector
space R. Since & is infinite, we can choose a proper subset &, & & of the same
cardinality: |&| = |&|. If 2 denotes the P-subspace of R generated by &, then
Zo & R and 2" and R are isomorphic as vector spaces over P. If 2" and R were
isomorphic as ordered vector spaces over P, then 2 would be order complete and,
as a consequence, we would have 2" = R; a contradiction. >

Theorem 14. Let X be a real universally complete vector lattice without locally
one-dimensional bands. Then there exist a vector sublattice Xqg C X and a band
preserving linear bijection T : X, — X such that T~! : X — X, is also band
preserving but Xy and X are not lattice isomorphic.

<0 We can assume without loss of generality that X = %] and [Z # R"] = 1. By
Proposition 7 there exist an R"-linear subspace 2" in # and R”-linear isomorphism 7
from 2 onto #, while 2" and % are not isomorphic as ordered vector spaces
over R". Put Xy := 2|, T:= 7}, and S:= 77!|. The maps S and T are band
preserving and R-linear by [25, Theorem 4.3.4]. Moreover, S = (7))™' = T~%L
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It remains to observe that Xy and X are lattice isomorphic if and only if 2" and #Z
are isomorphic as ordered vector spaces over R". >

REMARK 3. By the same kind of reasoning one can prove the following. If X
is a real universally complete vector lattice without locally one-dimensional bands
then there exist component-wise closed vector sublattices X; C X and Xy C X
and band preserving linear bijections 77 : X; — X and 75 : Xo — X such that:
1) T,;' : X — X} is also band preserving (k = 1,2); 2) X = X; @ Xy; 3) the
canonical projection 7, : X — X} is band preserving (k = 1,2); 4) neither X; nor
X5 is Dedekind complete and hence lattice isomorphic to X.

C. Classification of injective modules. In what follows, K stands for
a commutative semiprime ring with unit and X denotes a unitary K-module.

DEFINITION 13. A K-module X is separated provided that for every dense ideal
J C K the identity J = {0} implies = 0. Recall that a K-module X is injective
whenever, given a K-module Y, a K-submodule Y, C Y, and a K-homomorphism
ho : Yo — X, there exists a K-homomorphism A : Y — X extending hy.

The Baer criterion says that a K-module X is injective if and only if for each ideal
J C K and each K-homomorphism % : J — X there exists x € X with h(a) = za
for all @ € J; see Lambek [26]. All modules under consideration are assumed to
be faithful, that is, Xk # {0} for any 0 # k € K, or equivalently, the canonical
representation of K by endomorphisms of the additive group X is one-to-one.

The following result is due to Gordon [15, 16].

Theorem 15. Let 2 be a vector space over a field # within V®  and let
X : B — B(#]) be a Boolean isomorphism in Theorem 12. Then %] is a separated
unital injective module over J£ | such that b < [r = 0] and x(b)x = {0} are
equivalent for all x € 2| and b € B.

Conversely, if K is a rationally complete semiprime ring, B:= A(K), and ¢ is as
in Theorem 12, then for every unital separated injective K-module X there exists
an internal vector space 2~ € V®) over # such that the K-module X is isomorphic
to Z ). Moreover if y : K — ¢ | is an isomorphism in Theorem 12, then one can
choose an isomorphism v : X — 2| such that 1(ax) = j(a)i(z) (a € K, z € X).

< See |24, Theorems 8.3.12 | and |24, and 8.3.13|. >

Thus, Theorem 15 enables us to apply Boolean valued approach to unital sepa-
rated injective modules over commutative semiprime rationally complete rings.

DEFINITION 14. A family & in a K-module X is called K-linearly independent
or symply linearly independent whenever, for all n € N, ay,...,a, € K, and
er,..., e, € &, the equality > ', ayep = 0 implies oy = ... = a,, = 0. An inclusion
maximal K-linearly independent subset of X is called a Hamel K-basis for X.

Every unital separated injective K-module X has a Hamel K-basis. A K-linearly
independent set & in X is a Hamel K-basis if and only if for every x € X there exist
a partition of unity (7mg)keny in P(K) and a family (Mg .)renees in K such that

ML = Zee@@ Meemie (k€ N)

and for every k € N the set {e € & : A\, # 0} is finite.
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DEFINITION 15. Let v be a cardinal. A K-module X is said to be Hamel -
homogeneous whenever there exists a Hamel K-basis of cardinality v in X. For
7 € P(X) denote by »(7) the least cardinal v for which 7.X is Hamel y-homogeneous.
Say that X is strictly Hamel y-homogeneous whenever X is Hamel y-homogeneous
and s(m) = ~ for all nonzero 7 € P(X).

Theorem 16. Let K be a semiprime rationally complete commutative ring
and let X be a separated injective module over K. There exists a partition of
unity (ey) er in P(K) with I' a set of cardinals such that e, X is strictly Hamel
~v-homogeneous for all v € I'. Moreover, X is isomorphic to HweF e, X and the
partition of unity (e, ) er is unique up to permutation.

<1 According to Theorems 12 and 15 we may assume that K = % | and X = 27|,
where 2" is a vector space over the field .# within V®. Moreover, dim(2") € V&,
the algebraic dimension of 2, is an internal cardinal and, since each Boolean valued
cardinal is a mixture of some set of relatively standard cardinals [25, 1.9.11], we have
dim(Z") = mix,er b,y" where I' is a set of cardinals and (b,),er is a partition of
unity. Thus, for all v € T' we have e, < [dim(Z") = "], whence e, X is strictly
Hamel y-homogeneous. The remaining details are elementary. >

REMARK 4. (1) Recently, Chilin and Karimov [12, Theorem 4|, without using
the Boolean valued approach, obtained that particular case of Theorem 16 when
K = L°(%) is a real or complex universally complete f-algebra. In this event 2" is
a vector spaces over the field of reals # = % or complexes # = ¢ within V&),
Another particular case of Theorem 16 when 2 is a vector subspace of Z (considered
as a vector space over R") was examined by Kusraev and Kutateladze [25, Chap. 4].

(2) The family (e,),er in Theorem 16 is called the passport for X. Thus, the
passport I'(X) is the interpretation of the algebraic dimension dim(.2") in V® with
B = A(X). Chilin and Karimov [12, Theorem 4.3] proved that separated injective
modules over K = LY(%) are isomorphic if and only if their passports coincide. This
result remains valid for any general commutative semiprime rationally complete ring.

(3) The family (e.) er in Theorem 16 is called a decomposition series if e, X is
(not necessarily strict) Hamel y-homogeneous for all v € T'. It can be also proved
that separated injective modules over K = L°(%) are isomorphic if and only if their
decomposition series are congruent in the sense of Ozawa [29].
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