A Riesz-Frechet theorem in Riesz spaces

Bruce A. Watson² with A. Kalauch and W. Kuo

University of the Witwatersrand

Abstract

Let *F* is a Dedekind complete Riesz space with weak order unit and conditional expectation operator *T*. In addition we assume that *T* is strictly positive and that *F* is *T*-universally complete. We define $E = L^2(T) := \{f \in F | f^2 \in F\}$, where multiplication as as defined in the *f*-algebra F_u , the universal completion of *F*. The *T*-strong dual of $L^2(T)$ denoted by \hat{E} consists of the maps $f : L^2(T) \to R(T) := T(F)$ such that f is R(T)-homogeneous, order continuous and there exists $k \in R(T)_+$ so that $|f(g)| \leq k ||g||_{T,2}$ for all $g \in L^2(T)$. Here $||g||_{T,2} = \sqrt{T(g^2)}$ and the space \hat{E} has R(T) valued norm $||f|| := \inf\{k \in R(T)_+ | |f(g)| \leq k ||g||_{T,2}$ for all $g \in E\}$. We give a Riesz-Frechet theorem which provides an isometry between *E* and \hat{E} .