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ORTHOSYMMETRIC BILINEAR OPERATORS1

A. G. Kusraev

Introduction

The class of orthosymmetric bilinear operators on vector lattices was introduced
by G. Buskes and A. van Rooij in [14] and received much attention in succeeding
years, see [5, 8, 13, 16, 21, 28, 29]. An inseparable companion of the orthosymmetric
bilinear operators turns out to be the concept of square of vector lattice, developed
by the same authors in another paper [16]. Different approaches to the construction
of the square of a vector lattice are presented in [5, 16].

As was observed in [13, 29], in the theory of positive orthosymmetric bilinear
operators, the role played by square of Archimedean vector lattice is as important as
that of Fremlin’s tensor product of Archimedean vector lattices [19] in the theory of
general positive bilinear operators. Both, the Fremlin tensor product and the square,
possess the following universal property: the sets of positive bilinear operators on
Cartesian product of two Archimedean vector lattices and positive orthosymmetric
bilinear operators on Cartesian square of an Archimedean vector lattice with values
in a relatively uniformly complete vector lattice are bijective with the sets of positive
linear operators on the Fremlin tensor product and on the square of given vector
lattices, respectively.

At the same time there is a significant difference: the mentioned correspondence
between positive linear and bilinear operators do not preserve order continuity in the
case of the Fremlin tensor product, while it does preserve in the case of the square.
Thus, the square of a vector lattice lends itself to a transfer of known results on
regular order continuous linear operators to regular order continuous orthosymmetric
bilinear operators. This fact is crucial, in particular, for the validity of a Radon–
Nikodým type theorem for orthosymmetric bilinear operators.

The aim of this paper is to provide new information about the structure of
orthosymmetric bilinear operators and, in particular, to prove a Radon–Nikodým
type theorem for this class of operators. The paper is organized as follows. The
main purpose of the first two sections is to fix the notation and terminology and
give a brief outline of some useful results which are of particular importance to this
paper. Section 1 deals with general bilinear operators on products of vector lattices
while Section 2 introduces the class of orthosymmetric bilinear operators, the main
subject of the paper.

The purpose of the next three sections is to consider some interplay between
squares of vector lattices and homogeneous functional calculus. We also collect some
useful facts on homogeneous functional calculus which despite of their simplicity
does not seem appeared in the literature. In Section 3 we introduce homogeneous
functional calculus on relatively uniformly complete vector lattices. Section 4 deals

1Supported by a grant from Russian Foundation for Basic Research, project No. 06-01-00622.
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with Hölder type inequalities for orthosymmetric bilinear operators. In Section 5 we
prove further Hölder type inequalities containing homogeneous expressions of the
form |x1|

p1 · . . . · |xN |
pN with 0 ≤ p1, . . . , pN ∈ R, p1 + · · ·+ pN = 1.

Section 6 provides some new information concerning the structure of the square
of a vector lattice. In Section 7 we characterize orthoregular bilinear operators that
may be presented as differences of symmetric lattice bimorphisms. In Section 8 we
introduce order interval preserving order continuous bilinear operators and prove
that an orthosymmetric positive bilinear operator is order interval preserving if and
only if its linearization via square is also order interval preserving.

A Radon–Nikodým type theorem and Hahn Decomposition Theorem for order
continuous orthoregular bilinear operators are discussed in Section 9. Finally, Section
10 contains concluding remarks outlining some further perspectives.

The main tools used and developed in this paper are based on two fundamental
concepts, namely homogeneous functional calculus on vector lattices and powers of
vector lattices. Both go back to G. Ya. Lozanovskĭı, see [40, 41, 42, 43, 44, 45].

For the theory of vector lattices and positive operators we refer to the books
[4] and [27]. Throughout the paper a vector lattice means an Archimedean vector
lattice over the field of real numbers. We use the symbol := if an equality is taken as
a definition; N and R stand for the sets of natural numbers and reals, respectively.

1. Bilinear operators on vector lattices

In this section we introduce the classes of bilinear operators on products of vector
lattices. The main purpose is to fix the notation and terminology and give a brief
outline of some useful facts. For an extended discussion of this subject see the
forthcoming survey paper [11].

1.1. Let E, F , and G be vector lattices. A bilinear operator b : E × F → G
is called positive if b(x, y) ≥ 0 for all 0 ≤ x ∈ E and 0 ≤ y ∈ F , and regular if
it can be represented as the difference of two positive bilinear operators. Denote
by BLr(E,F ;G) and BL+(E,F ;G) respectively the sets of all regular and positive
bilinear operators from E × F to G. For any positive bilinear operator b we have
|b(x, y)| ≤ b(|x|, |y|) (x ∈ E, y ∈ F ).

A bilinear operator b : E × F → G is said to be of order bounded variation if for
all 0 ≤ x ∈ E and 0 ≤ y ∈ F the set

Σb[x; y] :=

{ n∑

k=1

m∑

l=1

b(xk, yl) : 0 ≤ xk ∈ E (1 ≤ k ≤ n ∈ N),

0 ≤ yl ∈ E (1 ≤ l ≤ m ∈ N), x =
n∑

k=1

xk, y =
m∑

l=1

yl

}

is order bounded in G. The set of all bilinear operators b : E × F → G that
are of order bounded variations (order bounded) is denoted by BLbv(E,F ;G)(
BL∼(E,F ;G)

)
and forms an ordered vector space with the positive cone

BL+(E,F ;G). Obviously, BLr(E,F ;G) ⊂ BLbv(E,F ;G) ⊂ BL∼(E,F ;G) and
BLr(E,F ;G) is considered with the induced ordering. The converse inclusion may
be false. Order bounded variation was first introduced in [51], see also [11, 17].

If G is Dedekind complete then BLr(E,F ;G) = BLbv(E,F ;G) and this space
is a Dedekind complete vector lattice, see [17]. In particular, every regular bilinear
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operator b ∈ BLr(E,F ;G) has the modulus |b| and

|b|(x, y) = supΣb[x; y] (0 ≤ x ∈ E, 0 ≤ y ∈ F ),

|b(x, y)| ≤ |b|(|x|, |y|) (x ∈ E, y ∈ F ).

1.2. A bilinear operator b : E × F → G is said to be lattice bimorphism if
the mappings be : y 7→ b(e, y) (y ∈ F ) and bf : x 7→ b(x, f) (x ∈ E) are lattice
homomorphisms for all 0 ≤ e ∈ E and 0 ≤ f ∈ F , see [19]. Evidently, every lattice
bimorphism is positive. The following characterization of lattice bimorphism was
given in [54].

For a positive bilinear operator b the following assertions are equivalent:

(1) b is a lattice bimorphism;

(2) |b(x, y)| = b(|x|, |y|) for all x ∈ E and y ∈ F ;

(3) if 0 ≤ x, u ∈ E and 0 ≤ y, v ∈ F satisfy x ∧ u = 0 and y ∧ v = 0, then
b(x, y) ∧ b(u, v) = 0.

The lattice bimorphisms are simple in structure modulo the lattice homomor-
phisms, as is shown in [35]: Any lattice bimorphism b : E × F → G admits the
representation b(x, y) = S(x)T (y) (x ∈ E, y ∈ F ), where S : E → Gu and T : F →
Gu are lattice homomorphisms with values in the universal completion Gu of G and
Gu is equipped with an f -algebra multiplication uniquely determined by a choice of
an order unit in Gu.

The following fundamental result was established by D. Fremlin in [19; Theo-
rem 4.2]. (Different approaches to the Fremlin tensor product see [22, 54].)

1.3. Theorem. Let E and F be vector lattices. Then there exist a unique up to
isomorphism vector lattice E ⊗F and a bimorphism φ : E ×F → E ⊗F such that:

(1) whenever G is a vector lattice and ψ : E × F → G is a lattice bimorphism,

there is a unique lattice homomorphism T : E ⊗ F → G with T ◦ φ = ψ;

(2) φ induces an embedding of the algebraic tensor product E ⊗ F into E ⊗ F ;

(3) E ⊗ F is dense in E ⊗ F in the sense that for every v ∈ E ⊗ F there exist
x0 ∈ E and y0 ∈ F such that for every ε > 0 there is an element u ∈ E ⊗ F with
|v − u| ≤ εx0 ⊗ y0;

(4) if 0 < v ∈ E ⊗ F , then here exist x ∈ E+ and y ∈ F+ with 0 < x⊗ y ≤ v.

The lattice bimorphism φ is conventionally denoted by ⊗ and the algebraic tensor
product E ⊗ F is regarded as actually embedded into E ⊗ F .

1.4. Let ψ and T be the same as in Theorem 1.3 (1). Suppose that for any x ∈ E+

and y ∈ E+ the equality ψ(x, y) = 0 implies x = 0 or y = 0. In this case T is injective

and thus maps E ⊗F onto a vector sublattice of G generated by imψ := ψ(E ×F ).
In particular, if E0 and F0 are vector sublattices in E and F , respectively, then the
tensor product E0 ⊗ F0 is isomorphic to the vector sublattice in E ⊗ F generated
by E0 ⊗ F0. Therefore, E0 ⊗ F0 is regarded as a vector sublattice of E ⊗ F , see [19;
Corollaries 4.4 and 4.5].

D. Fremlin [19; Theorem 5.3] proved also the following important universal

property of E ⊗ F : if G is a relatively uniformly complete vector lattice, then for
every positive bilinear operator b : E × F → G there exists a unique positive linear
operator T : E ⊗ F → G such that b = T⊗.

Let Lr(H,G) and L∼(H,G) stand respectively for the spaces of all linear regular
operators and linear order bounded operators from H to G.



6 A. G. Kusraev

1.5. Theorem. Let E, F , and G be vector lattices with G relatively uniformly
complete. Then the mapping T 7→ T⊗ constitutes an isomorphism of the following
pairs of ordered vector spaces:

(1) Lr(E ⊗ F,G) and BLr(E,F ;G);

(2) L∼(E ⊗ F,G) and BLbv(E,F ;G).

C The first assertion is immediate from the above mentioned universal property
of the Fremlin tensor product and the second one was established in [17]. B

Thus, the Fremlin tensor product lends itself to a transfer of known results on
regular linear operators to regular bilinear operators as well as on order bounded
linear operators to bilinear operators of order bounded variation. This and certain
other aspects of bilinear operators on products of vector lattices are presented in
[11]. Concerning dominated bilinear operators in lattice normed spaces see [36].

1.6. A bilinear operator b is called separately order continuous if be and bf are
order continuous for each e ∈ E and each f ∈ F . Order continuity of b means that
the net

(
b(xα, yβ)

)
is order convergent to b(x, y) whenever (xα) is order convergent

to x in E and
(
yβ
)

is order convergent to y in F . As was observed in [57] a regular
bilinear operator b is order continuous if and only if b is separately order continuous.
The set of all order continuous regular bilinear operators with the linear operations
and order relation induced from BLr(E,F ;G) is denoted by BLn(E,F ;G).

An operator b ∈ BLr(E,F ;G) is called singular if it vanishes on some order dense
ideal in E × F . We say that b is supersingular if b vanishes on an order dense ideal
of the form E0 × F or E × F0 where E0 and F0 are order dense ideals in E and
F , respectively. The sets of all singular and all order continuous bilinear operators
comprise disjoint order ideals in BLr(E,F ;G).

1.7. Let E, F and G be vector lattices with G Dedekind complete. For any regular
bilinear operator b : E × F → G the following are equivalent:

(1) b is order continuous;

(2) b is separately order continuous;

(3) b is disjoint from all singular b′ ∈ BLr(E,F ;G);

(4) b is disjoint from each supersingular b′ ∈ BLr(E,F ;G).
In particular, BLn(E,F ;G) is a band in BLr(E,F ;G).

C This fact was proved in [25; Proposition 4] and [57; Theorem 1]. B

1.8. In spite of the nice universal property, Fremlin’s tensor product has an
essential disadvantage: the isomorphism from 1.5 do not preserve order continuity.
For an order continuous T ∈ Lr(E ⊗ F → G) the bilinear operator T⊗ ∈
BLr(E,F ;G) is also order continuous but the converse may be false. An example
can be extracted from [20].

D. Fremlin introduced also a construction for the “projective” tensor product

E
4

⊗ F of Banach lattices E and F as the completion of E ⊗ F under “positive-
projective” norm ‖ · ‖|π| [20; Theorem 1 E]. If E = L2([0, 1]), then E ⊗ E is order

dense in E
4

⊗E but the norm of E
4

⊗E is not order continuous, see [20; 4 B and 4 C].

Thus, there exists a (norm continuous) positive linear functional l ∈ (E
4

⊗E)′ which is

not order continuous. Clearly, the restriction l0 of l to E⊗E is not order continuous,
too. At the same time the positive bilinear functional b = l0⊗ is separately order
continuous, since E has an order continuous norm.
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2. Orthosymmetric bilinear operators

As the title indicates in this section we introduce the main subject of the paper
and outline some results needed in the sequel. More details can be found in [11, 13].

2.1. A bilinear operator b : E × E → G is called orthosymmetric if |x| ∧ |y| = 0
implies b(x, y) = 0 for arbitrary x, y ∈ E, see [14]. The difference of two positive
orthosymmetric bilinear operators is called orthoregular, see [13, 29]. Denote by
BLor(E;G) the space of all orthoregular bilinear operators from E×E to G ordered
by the cone of positive orthosymmetric operators. Recall also that b is said to be
symmetric if b(x, y) = b(y, x) for all x, y ∈ E, positively semidefinite if b(x, x) ≥ 0
for every x ∈ E, and positively definite if it is positively semidefinite and b(x, x) = 0
implies x = 0 for all x ∈ E.

As an example of orthosymmetric bilinear operator we refer to the multiplication
(x, y) 7→ xy (x, y ∈ A) of an almost f -algebra A, since an almost f -algebra is by
definition a lattice ordered algebra whose multiplication is a positive orthosymmetric
bilinear operator, see [6]. The survey on certain aspects of f -algebras see in [10].

2.2. Denoted by BL∼o (E;G) the space of orthosymmetric order bounded bilinear
operators from E × E to F with ordering induced from BL∼(E,E;F ). Put
BLobv(E;G) := BLbv(E,E;G) ∩ BL∼o (E;G). Then BLor(E;G) ⊂ BLobv(E;G) ⊂
BL∼o (E;G) and the converse inclusions may be false. If G is Dedekind complete,
then these three classes of operators coincide and form a band in BLr(E,E;G).
Thus, any positive bilinear operator b : E ×E → G admits a unique decomposition
b = c+d where c ⊥ d, c is orthosymmetric, and no nonzero orthosymmetric positive
bilinear operator is majorized by d. The orthosymmetric component c of b can be
described as follows:

c(x, y) := inf

{
∑

{k,l: xk∧yl 6=0}

b(xk, yl) : 0 ≤ xk, yl ∈ E (k = 1, . . . ,m ∈ N;

l = 1, . . . , n ∈ N), x =
m∑

k=1

xk, y =
n∑

l=1

yl

}
,

for x, y ∈ E+. Clearly, c admits a unique bilinear extension from E+×E+ to E ×E
by differences. In the case of bilinear forms (i. e. G = R) this formula was established
by O. van Gaans [21; Theorem 3.2]. S. N. Tabuev observed that the formula remains
valid in general case (private communication).

The following important property of orthosymmetric bilinear operators was
established in [14; Corollary 2]:

2.3. Theorem. If E and F be vector lattices, then any orthosymmetric positive
bilinear operator from E × E to F is symmetric.

In particular, any Archimedean almost f -algebra is commutative [14]. It is easily
seen that an orthosymmetric positive bilinear operator is positively semidefinite [21].
The converse is also true for lattice bimorphisms, see [13].

2.4. If E and F be vector lattices, then for any lattice bimorphism b : E×E → F
the following are equivalent:

(1) b is symmetric;

(2) b is orthosymmetric;

(3) b is positively semidefinite.
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2.5. Theorem. For an arbitrary vector lattice E there exists (unique up to
isomorphism) a vector lattice E¯ and a lattice bimorphism ¯ : (x, y) 7→ x¯ y from
E × E to E¯ such that the following assertions hold:

(1) if b is a symmetric lattice bimorphism from E × E to some vector lattice F
then there is a unique lattice homomorphism Φb : E

¯ → F with b = Φb¯;

(2) given an arbitrary u ∈ E¯, there is e0 ∈ E+ such that, for every ε > 0, one
can choose x1, . . . , xn, y1, . . . , yn ∈ E with

∣∣∣∣∣u−
n∑

i=1

xi ¯ yi

∣∣∣∣∣ ≤ εe0 ¯ e0;

(3) for any x, y ∈ E we have x¯ y = 0 if and only if x ⊥ y;

(4) given an element 0 < u ∈ E¯, there exists e ∈ E+ with 0 < e¯ e ≤ u.

C See [13; Theorem 2.1] and [15; Theorem 4]. B

2.6. The vector lattice E¯ (or the pair (E¯,¯)) uniquely (up to lattice
isomorphism) determined by an arbitrary vector lattice E is called the square of
E. The lattice bimorphism ¯ : E × E → E¯ is called the canonical bimorphism.
The construction of E¯ was first introduced in [16] as follows.

Denote by J the smallest relatively uniformly closed order ideal in Fremlin’s
tensor product E ⊗ E containing the set {x ⊗ y : x, y ∈ E, x ⊥ y}. Define E¯ :=

E⊗E/J and ¯ := φ⊗ where φ : E⊗E → E¯ is the quotient homomorphism. Then
E¯ and ¯ meet the requirements of Theorem 2.5.

The pair (E¯,¯) is essentially unique, i.e. if for some vector lattice E} and
symmetric lattice bimorphism } : E × E → E} the pair (E},}) obeys the said
universal property, then there exists a lattice isomorphism i from E¯ onto E} such
that i¯ = } (and, of course, i−1} = ¯). Now we state a structural property of
orthosymmetric regular bilinear operators [31].

2.7. Theorem. Let E, F , and G be vector lattices with G uniformly complete.
Let 〈· , ·〉 : E × E → F be a positively definite lattice bimorphism and F0 be the
smallest vector sublattice in F containing the set {〈x, y〉 : x, y ∈ E}. Then for
every orthosymmetric regular bilinear operator b : E×E → G there exists a unique
regular linear operator Φb : F0 → G such that

b(x, y) = Φb(〈x, y〉) (x, y ∈ E).

The correspondence b 7→ Φb constitutes an isomorphism of the ordered vector spaces
BLor(E,G) and Lr(F0, G).

By 2.5 (1) there exists a lattice isomorphism h : E¯ → F0 such that 〈· , ·〉 = h¯.
Thus, if G is relatively uniformly complete, then for every bilinear orthoregular
operator b : E × E → G there exists a unique linear regular operator Φb : E

¯ → G
such that

b(x, y) = Φb(x¯ y) (x, y ∈ E).

Moreover, the correspondence b 7→ Φb (called also the linearization via square)
constitutes an isomorphism of the ordered vector spaces BLor(E,G) and Lr(E

¯, G),
see [15; Theorem 9] and [13; Theorem 3.1]. The operator Φb is also called the
linearization of b via square.

Thus, an orthoregular bilinear operator defined on a vector lattice and with
values in a uniformly complete vector lattice is representable as a composition of
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the canonical bimorphism and some regular linear operator uniquely defined on the
square of the given vector lattice. This approach leads us to extension and analytical
representation results for orthoregular bilinear operators, see [13].

2.8. The following result was obtained in [15]: The Dedekind completion of an
almost f -algebra A can be endowed by an almost f -algebra multiplication that
extends the multiplication on A. This raises the question of whether an almost f -
algebra multiplication given on a majorizing vector sublattice A can be extended
to an almost f -algebra multiplication on the ambient vector lattice E. The positive
answer was announced in [29] but the available proof is not correct as G. Buskes
indicated (private communication).

3. Homogeneous functions on vector lattices

In this section we introduce homogeneous functional calculus on relatively
uniformly complete vector lattices and state some useful facts. There are different
ways to introduce the homogeneous functional calculus on vector lattices, see [12, 24,
39, 45, 55, 58]. We follow the approach [12, 16] going back to G. Ya. Lozanovskĭı [45].

3.1. Denote by H (RN) the vector lattice of all continuous positively homogene-
ous functions f : RN → R. In accordance with [12] we say that f(x1, . . . , xN) exists
in E and write y = f(x1, . . . , xN ) if there is an element y ∈ E such that ω(y) =
f(ω(x1), . . . , ω(xN)) for every R-valued lattice homomorphism ω on the sublattice of
E generated by {x1, . . . , xN , y}. The definition is correct in the sense that if L is any
vector sublattice of E containing {x1, . . . , xN , y} and ω(y) = f(ω(x1), . . . , ω(xN))
(ω ∈ Ω) for some point separating set Ω of R-valued lattice homomorphisms on
L, then y = f(x1, . . . , xN). It is immediate from the definition that f(x, . . . , x) =
xf(1, . . . , 1) whenever 0 ≤ x ∈ E. Define dtj ∈ H (RN) by dtj(t1, . . . , tN) = tj
(j := 1, . . . , N). A homogeneous functional calculus can be extended in the spirit of
monotonic analysis [53] to the class of increasing positively homogeneous functions
f defined on conic subsets of RN .

3.2. Theorem. Let E be a relatively uniformly complete vector lattice and
x1, . . . , xN ∈ E. Then f(x1, . . . , xN ) exists for any f ∈ H (RN) and the mapping

f 7→ f(x1, . . . , xN)
(
f ∈H (RN)

)

is a unique lattice homomorphism from H (RN) into E with dtj(x1, . . . , xN ) = xj
(j := 1, . . . , N).

In particular, if f, g ∈ H (RN) and f ≤ g, then f(x1, . . . , xN) ≤ g(x1, . . . , xN)
for all (x1, . . . , xN) ∈ E

N . Moreover, the inequality holds:

|f(x1, . . . , xN)| ≤ ‖f‖
N∨

j=1

|xj|,

where ‖f‖ := sup{f(t1, . . . , tN) : (t1, . . . , tN) ∈ RN , maxj |tj| = 1}.

3.3. Let K,M,N ∈ N and consider finite collections of positively homogeneous
functions f1, . . . , fM ∈ H (RN) and g1, . . . , gK ∈ H (RM). Denote f := (f1, . . . , fM)
and g := (g1, . . . , gK). Then g1◦f, . . . , gK◦f ∈H (RN) and, for any x := (x1, . . . , xN)
in EN and y := (y1, . . . , yM) in EM , the elements f(x) := (f1(x), . . . , fM(x)) ∈ EM

and g(y) := (g1(y), . . . , gK(y)) ∈ E
K are well defined. Moreover,

(g ◦ f)(x) = g(f(x)) (x :== (x1, . . . , xN) ∈ E
N).
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In particular, if N =M = K and g = f−1, then

f−1(f(x)) = x, f(f−1(y)) = y (x, y ∈ EN).

We define also f1 × g1 : E
N+M → E2 by (f1 × g1)(x, y) := (f1(x), g1(y)).

3.4. Let E and F be relatively uniformly complete vector lattices, h : E → F be
a lattice homomorphism, x1, . . . , xN ∈ E, and f ∈ H (RN). Then

h(f(x1, . . . , xN )) = f(h(x1), . . . , h(xN))).

If E is a relatively uniformly complete vector sublattice of F containing x1, . . . , xN ∈
F and h is the inclusion map E ↪→ F , then f(x1, . . . , xN) relative to F is contained
in E and its meaning relative to E is the same.

3.5. Assume that f ∈ H (RN) possesses the following property:

(∀ t1, . . . , tN ∈ R) t1t2 · . . . · tN = 0 ⇒ f(t1, t2, . . . , tN) = 0.

Then for any u, x1, . . . , xN ∈ E and fixed integer 1 ≤ k ≤ N we have

xk ⊥ u ⇒ f(x1, . . . , xk−1, xk, xk+1, . . . , xN ) ⊥ u.

Moreover, for any band L ⊂ E there holds f(x1, . . . , xk−1, xk, xk+1, . . . , xN) ∈ L
whenever xk ∈ L. If L admits a band projection π, then

πf(x1, . . . , xk−1, xk, xk+1, . . . , xN) = f(x1, . . . , xk−1, πxk, xk+1 . . . , xN ).

Now, we consider concrete examples of homogeneous functions.

3.6. Homogeneous functional calculus is used to introduce the so called p-con-
vexification and p-concavification procedures for a Banach lattice, see [39, 58].
Consider three functions σα,N , σ

′
α,N : R

N → R, and J : R2 → R defined by

σα,N (t1, . . . , tN) := θ−1α (θα(t1) + · · ·+ θα(tN)),

σ′α,N(t1, . . . , tN) := θα(θ
−1
α (t1) + · · ·+ θ−1α (tN)),

J(r, s) := θ−12 (rs) (r, s, t1, . . . , tN ∈ R),

where 0 < α ∈ R and θα : t 7→ sgn(t)tα is an order preserving bijection of
R. Obviously, σα,N , σ

′
α,N belong to H (RN) and J belongs to H (R2), so that

σα,N(x1, . . . , xN), σ
′
α,N(x1, . . . , xN), and J(x, y) are well defined for all x, y, x1, . . . , xN

in a relatively uniformly complete vector lattice E. From the above definitions the
following implication is easily deduced

(∀x, y ∈ E) |x| ∧ |y| = 0 ⇒ σα,2(x, y) = σ′α,2(x, y) = x+ y,

since it is true in the real context. Denote for brevity θ := θ2, σ= σ2,2, and σ′= σ′2,2.
Given a relatively uniformly complete vector lattice E, the square (E¯,¯) can

be defined as E¯ := (E, +̃, ∗,≤) and ¯ := J , where x+̃y := σ(x, y), λ ∗ x := θ−1(λ)x,
and ≤ is the given ordering in E, see [16; Theorem 9] and 6.1 below.

3.7. We say that a function f ∈ H (RN) is multiplicative and modulus pre-

serving if f(s1t1, . . . , sN tN) = f(s1, . . . , sN)f(t1, . . . , tN) and f(|t1|, . . . , |tN |) =
|f(t1, . . . , tN)| for all s1, t1, . . . , sN , tN ∈ R. The general form of a positively
homogeneous multiplicative and modulus preserving function is given by

t1t2 · . . . · tN = 0 ⇒ f(t1, t2, . . . , tN) = 0,

f(t1, . . . , tN) = f(|t1|, . . . , |tN |) sgn f(t1, . . . , tN),

f(|t1|, . . . , |tN |) = exp(g1(ln |t1|)) · . . . · exp(gN(ln |tN |)),
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where g1, . . . , gN are some additive functions in R (i. e. solutions to Cauchy functional

equation, see [2]) with
∑N

i=1 gi = IR. In the case of continuous g1, . . . , gN we
get a Kobb–Duglas type function f and if, in addition, f is nonnegative, then
f(t1, . . . , tN) = c|tp11 |·. . .·|t

pN
N | with 0 ≤ c, p1, . . . , pN ∈ R and

∑N
i=1 pi = 1. Therefore,

the expression |x1|
p1 · . . . · |xN |

pN is well defined in E. Moreover,

|x1|
p1 · . . . · |xN |

pN ≤ p1|x1|+ · · ·+ pN |xN |

by the inequality between the weighted arithmetic and geometric means.

4. Gauges and Hölder type inequalities

Now we consider some interplay between squares of vector lattices and
homogeneous functional calculus and deduce some Hölder type inequalities. In the
sequel E denotes a relatively uniformly complete vector lattice.

4.1. A gauge is a nonnegative sublinear function defined on a convex cone
contained in RN . The polar k◦ of a gauge k defined by

k◦(t) := inf{λ > 0 : (∀ s ∈ RN) 〈s, t〉 ≤ λk(s)} (t ∈ RN)

is also a gauge. (Hereafter 〈s, t〉 := s1t1 + · · ·+ sN tN). Moreover, k◦◦ := (k◦)◦ = k if
and only if k is lower semicontinuous (for more details see [52]).

A gauge k : RN → R is strictly positive provided that k(s) > 0 for every s 6=
0. Here we consider only strictly positive gauges defined everywhere on RN . The
totality of such gauges on RN will be denoted by G (RN). Every gauge from G (RN)
is continuous. The polar of a gauge k ∈ G (RN) is also contained in G (RN) and can
be calculate by

k◦(t) = sup
06=s∈RN

〈s, t〉

k(s)
= sup{〈s, t〉 : s ∈ RN , k(s) ≤ 1} (t ∈ RN).

Since G (RN) ⊂ H (RN), there exist k(x1, . . . , xN) ∈ E and k◦(x1, . . . , xN) ∈ E
for any x1, . . . , xN ∈ E. Moreover, the mapping (x1, . . . , xN ) 7→ k(x1, . . . , xN ) is a
sublinear operator from EN to E and

|k(x1, . . . , xN )− k(y1, . . . , yN )| ≤ ‖p‖
N∨

i=1

|xi − yi|.

4.2. If k ∈ G (RN) and x1, . . . , xN ∈ E, then

k◦(x1, . . . , xN) = sup

{
N∑

i=1

λixi : (λ1, . . . λN) ∈ RN , k(λ1, . . . λN) ≤ 1

}
.

Moreover, k◦(x1, . . . , xN) is a relatively uniform limit of an increasing sequence which

is comprised of the finite suprema of linear combinations of the form
∑N

i=1 λixi with
k(λ1, . . . λN) ≤ 1.

C Observe that the set U :=
{∑N

i=1 λixi : k(λ1, . . . λN) ≤ 1
}

is norm totally

bounded in the AM -space Eu, u := |x1| ∨ · · · ∨ |xN |, since it is the image of the

compact set {λ ∈ RN : k(λ) ≤ 1} under the map λ = (λ1, . . . , λN) 7→
∑N

k=1 λixi.
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Denote by U∨ the subset of E consisting of the suprema of the finite subsets of U .
Then by Krengel’s Lemma (see [4; Theorem 12.29] or [1; Lemma 3.13]) y := supU
exists in Eu and belongs to the norm closure U∨ of U∨. Since U∨ is upward directed,
U∨ is norm convergent to y. Therefore, for any R-valued homomorphism ω on Eu

we have
ω(y) = lim

u∈U∨
ω(u) = sup{ω(u) : u ∈ U∨}

= sup{ω(u) : u ∈ U} = k◦(ω(x1), . . . , ω(xN)).

Thus, y = k◦(x1, . . . , xN) by [12; Corollary 3.4]. B

4.3. Take a gauge kp,N : (t1, . . . , tN) 7→
(∑N

i=1 |ti|
p
) 1

p
with 1 ≤ p ≤ ∞. For

the corresponding mapping from EN into E an expressive notation is used, see
[39, 55, 58]:

(
n∑

i=1

|xi|
p

)1
p

:= kp,N(x1, . . . , xN ) (x1, . . . , xN ∈ E).

For p = ∞, we define kp,N(t1, . . . , tN) = max
{
|ti| : i := 1, . . . , N

}
and, obviously,

kp,N(x1, . . . , xN) = |x1| ∨ . . . ∨ |xN |. Of course, kp,N ∈ H (RN) and the mapping
(x1, . . . , xN ) 7→ kp,N(x1, . . . , xN) ∈ E is well defined even if 0 < p < 1, but in this
case kp,N /∈ G (RN) and the corresponding mapping is not sublinear.

4.4. For any k ∈ G (RN) and x1, . . . , xN , y1, . . . , yN ∈ E the inequality holds

N∑

i=1

xi ¯ yi ≤ k(x1, . . . , xN)¯ k◦(y1, . . . , yN).

C It is an easy exercise to check that the inequality (see 3.6)

σ2,N
(
J(s1, t1), . . . , J(sN , tN)

)
≤ J

(
k(s1, . . . , sN), k

◦(t1, . . . , tN)
)
.

is equivalent to the well known property of gauges (see, [52]):

〈s, t〉 ≤ k(s)k◦(t) (s = (s1, . . . , sN), t = (t1, . . . , tN) ∈ RN).

Combining this with 3.3 and 3.6 we obtain the desired inequality. B

In the special case of k := kp,N , k◦ = kq,N , 1 ≤ p, q ≤ ∞, 1/p+ 1/q = 1, we have

N∑

i=1

|xi ¯ yi| ≤

(
N∑

i=1

|xi|
p

) 1
p

¯

(
N∑

i=1

|yi|
q

) 1
q

.

4.5. If b : E ×E → G is a positive orthosymmetric bilinear operator and xi, yi ∈
E, i := 1, . . . , N , then

N∑

k=1

|b(xk, yk)| ≤ b
(
k(x1, . . . , xN), k

◦(y1, . . . , yN )
)
.

C Apply Φb to 4.4 and use 2.7. B

Again, if 1 ≤ p, q ≤ ∞ and 1/p+ 1/q = 1, then

N∑

k=1

|b(xk, yk)| ≤ b



(

N∑

k=1

|xk|
p

)1
p

,

(
N∑

k=1

|yk|
q

)1
q


 .
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4.6. Let b : E × E → G be a positive orthosymmetric bilinear operator and b =
Φb¯ for a positive linear operator Φb from E¯ to G. Then for x1, y1, . . . , xN , yN ∈ E
and k ∈ G (RN) we have

k(b(x1, y1), . . . , b(xN , yN)) ≤ Φb

(
k(x1 ¯ y1, . . . , xN ¯ yN)

)
.

In particular, if 1 ≤ p, q ≤ ∞ and 1/p+ 1/q = 1, then

(
N∑

i=1

|b(xi, yi|)
p

)1
p

≤ Φb



(

N∑

i=1

|xi ¯ yi|
p

)1
p


 .

C Taking into consideration 2.7, 4.2 and positivity of Φb we deduce

N∑

i=1

λib(xi, yi) = Φb

(
N∑

i=1

λixi ¯ yi

)
≤ Φb

(
k(x1 ¯ y1, . . . , xN ¯ yN)

)

for any finite collection λ1, . . . λN ∈ R with k◦(λ1, . . . λN) ≤ 1. It remains to apply
4.2 again. B

4.7. If in 4.6 b is a lattice bimorphism, then

k(b(x1, y1), . . . , b(xN , yN)) = Φb

(
k(x1 ¯ y1, . . . , xN ¯ yN)

)
.

In particular, if 1 ≤ p, q ≤ ∞ and 1/p+ 1/q = 1, then we have

(
N∑

i=1

|b(xi, yi|
p

)1
p

= Φb



(

N∑

i=1

|xi ¯ yi|
p

)1
p


 .

C Since Φb is a lattice homomorphism by 2.5 (1), we only need to apply 3.4 and
2.7. B

5. Inequalities with monomials

In this section we prove several inequalities containing homogeneous expressions
of the form |x1|

p1 · . . . · |xN |
pN with 0 ≤ p1, . . . , pN ∈ R, p1 + · · ·+ pN = 1, see 3.7.

5.1. Assume that a homogeneous function f ∈ H (RN) is multiplicative and
modulus preserving. Then for all x1, y1, . . . , xN , yN ∈ E we have

f(x1 ¯ y1, . . . , xN ¯ yN) = f(x1, . . . , xN)¯ f(y1, . . . , yN ).

In particular, if 0 ≤ p1, . . . , pN ∈ R, p1 + · · ·+ pN = 1, then

N∏

i=1

|xi ¯ yi|
pi =

(
N∏

i=1

|xi|
pi

)
¯

(
N∏

i=1

|yi|
pi

)
.

C If f is multiplicative and modulus preserving, then θ(f(s1, . . . , sN)) =
f(θ(s1), . . . , θ(sN)) and the equality f ◦ (J × · · · × J) = J ◦ (f × f) holds, see
3.7. Applying 3.3 and 3.6 we come to the desired inequalities. B
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5.2. Теорема (The generalized Hölder inequality). Assume that E and G
be relatively uniformly complete vector lattices. If a mapping f : E → G is sublinear(
f(x + y) ≤ f(x) + f(y), f(λx) = λf(x); x, y ∈ E, 0 ≤ λ ∈ R

)
and increasing on

E+, then

f

(
N∏

i=1

|xi|
pi

)
≤

N∏

i=1

f(|xi|)
pi

for x1, . . . , xN ∈ E and 0 ≤ p1, . . . , pN ∈ R with p1 + · · ·+ pN = 1. Equality holds if
f is order continuous lattice homomorphism.

C Without loss of generality we may assume that 0 ≤ xi and 0 < pi < 1 for all
i := 1, . . . , N . Indeed, if {i1, . . . , ik} = {j ≤ N : pj 6= 0}, then |x1|

p1 · . . . · |xN |
pN =

|xi1 |
pi1 · . . . · |xik |

pik . Now we observe that, for 0 ≤ x, y ∈ E and 0 < p < 1, the
representation holds

xpy1−p = inf{pλ1/px+ (1− p)λ−1/(1−p)y : 0 < λ ∈ R}.

Indeed, by 3.7 for an arbitrary 0 < λ ∈ R the inequality is valid:

xpy1−p =
(
λ1/px

)p(
λ−1/(1−p)y

)1−p
≤ pλ1/px+ (1− p)λ−1/(1−p)y.

Assume that v ≤ ϕλ := pλ1/px+ (1− p)λ−1/(1−p)y for all 0 < λ ∈ R. By the Krĕıns–
Kakutani Representation Theorem we can view the principal ideal Eu generated by
u = x+y+|v| as C(S) for some compact space S. Then v, x, y, and xpy1−p lie in C(S)
and for 0 < λ ∈ R the pointwise inequality v(s) ≤ ϕλ(s) (s ∈ S) is true. If x(s) = 0,
then trivially v(s) ≤ inf{(1 − p)λ−1/(1−p)y(s) : 0 < λ ∈ R} = 0 = x(s)py(s)1−p. If
x(s) 6= 0, then for λ := (y(s)/x(s))p(1−p) we have ϕλ(s) = x(s)py(s)1−p ≥ v(s). Thus,
v ≤ xpy1−p and the desired representation for xpy1−p follows.

Now, taking into consideration that f is sublinear and increasing, we deduce

f(xpy1−p) ≤ inf{f(pλ1/px+ (1− p)λ−1/(1−p)y) : 0 < λ ∈ R} ≤

≤ inf{pλ1/pf(x) + (1− p)λ−1/(1−p)f(y) : 0 < λ ∈ R} = f(x)pf(y)1−p.

The general case is handled by induction. Suppose

f(xq11 · . . . · x
qN−1
N−1 ) ≤ f(x1)

q1 · . . . · f(xN−1)
qN−1 ,

whenever q1+ · · ·+ qN−1 = 1. Put p := p1+ · · ·+ pN−1, qi := pi/p (i := 1, . . . , N − 1),

and u :=
(
xp11 · . . . · x

pN−1

N−1

)1/p
= xq11 · . . . · x

qN−1

N−1 . Then

f
(
xp11 · . . . · x

pN
N

)
= f(upxpNN ) ≤ f(u)pf(xN)

pN

= f
(
xq11 · . . . · x

qN−1

N−1

)p
f(xN)

pN ≤ f(x1)
p1 · . . . · f(xN)

pN ,

and the required inequality follows. The remaining part is obvious. B

5.3. We can take in 5.2 an arbitrary increasing gauge k ∈ G (RM) instead of f and
consider the corresponding sublinear operator from EM to E. Suppose that M ∈ N

and for every j := 1, . . . ,M a finite collection of elements (x1j, . . . , xNj) ∈ EM is
given. Replacing f , for example, by kp,M (1 ≤ p ≤ ∞) we arrive at the following
version of Hölder inequality:

(
M∑

j=1

(
|x1j|

p1 · . . . |xpNNj|
)p
)1/p

≤

(
M∑

j=1

|x1j|
p

)p1/p

· . . . ·

(
M∑

j=1

|xNj|
p

)pN/p

.
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5.4. Let (Ω,Σ, µ) be a measure space with a σ-finite positive measure µ and F be
a Banach lattice. Let L 1(Ω,Σ, µ, F ) be the space of all Bochner integrable functions
on Ω with values in F and E := L1(µ, F ) := L (Ω,Σ, µ, F )/ ∼ denotes the space of
all equivalence classes (of almost everywhere equal) functions from L 1(Ω,Σ, µ, F ).
Then E = L1(µ, F ) is also a Banach lattice and hence f(x1, . . . , xN) is well defined
in E for f ∈H (RM) and x1, . . . , xN ∈ E. Denote by x̃ the equivalence class of x ∈
L 1(Ω,Σ, µ, F ). Making use of the continuity of functional calculus (see [16; Theorem
7]) one can deduce that for any finite collection x1, . . . , xN ∈ L 1(Ω,Σ, µ, F ) the
equality f(x̃1, . . . , x̃N )(ω) = f(x1(ω), . . . , xN (ω)) is true for almost all ω ∈ Ω. Since
the Bochner integral defines a linear and increasing operator from E to F , we can
replace f in 5.2 by the Bochner integral. Thus, we get the following Hölder inequality:

∫

Ω

(
N∏

i=1

|xi(ω)|
pi

)
dµ ≤

N∏

i=1

(∫

Ω

|xi(ω)| dµ

)pi

for x1(·), . . . , xN(·) ∈ L 1(Ω,Σ, µ, F ), 0 ≤ p1, . . . , pN ∈ R, p1 + · · ·+ pN = 1.

5.5. Let E and G be relatively uniformly complete vector lattices, f, g : E → G
be ingreasing sublinear operators, and b : E ×E → G be a positive orthosymmetric
bilinear operator. Then

b
(
f(|x1|

p1 · . . . · |xN |
pN ), g(|y1|

p1 · . . . · |yN |
pN )
)
≤

N∏

i=1

b
(
f(|xi|), g(|yi|)

)pi .

for all x1, y1, . . . , xN , yN ∈ E and 0 ≤ p1, . . . , pN ∈ R with p1 + · · ·+ pN = 1.

C By applying 5.2 to f and g and using 5.1 we obtain

f

(
N∏

i=1

|xi|
pi

)
¯ g

(
N∏

i=1

|yi|
pi

)
≤

N∏

i=1

(
f(|xi|)¯ g(|yi|)

)pi .

It remains to apply Φb to the last inequality, use again 5.2 with f := Φb, and take
2.7 into account. B

6. Squares of vector lattices

In this section we shall take a close look at the square of a vector lattice defined
in 2.6. First, in 6.1 and 6.2 (1, 2) below we present briefly some results from [16].
The following theorem is essentially a paraphrase of [16; Theorem 9].

6.1. Theorem. Let E be a relatively uniformly complete vector lattice. Then
the map ι : x 7→ x ¯ |x| constitutes a modulus preserving orthogonally additive
order isomorphism of E onto E¯. Moreover, for any order bounded orthosymmetric
bilinear operator b from E × E to any vector lattice F the formula

(Φb ◦ ι)(x) := b(x, |x|) (x ∈ E)

defines a unique order bounded linear operator Φb from E¯ to F with b = Φb ◦ ¯.

C Use the p-convexification procedure with p = 1/2, see [16] (p = 2 in notation
of [39, 58]). Define an addition +̃ and a scalar multiplication ∗ on E by

x+̃y := σ(x, y), λ ∗ x := θ−1(λ)x (λ ∈ R; x, y ∈ E)
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and put E• := (E, +̃, ∗,≤), where ≤ is the given ordering in E. It was established
in [16; Theorem 9 (iii)] that the homogeneous function J from 3.6, considered as an
operator from E×E to E•, is a symmetric bimorphism and (E•, J) is a square of E.
By 2.5 the square (E¯,¯) is essentially unique and thus j ◦ J = ¯ for some lattice
isomorphism j : E• → E¯. Denote by ι the lattice homomorphism j considered
as a bijection of E onto E¯. According to 3.6 x ⊥ y implies x + y = x+̃y and
hence ι(x+ y) = j(x+̃y) = j(x)+ j(y) = ι(x)+ ι(y); therefore, we conclude that ι is
orthogonally additive. Since J is an orthosymmetric bimorphism, we have J(x, |x|) =
J(x+, x+) − J(x−, x−) = (x+ − x−)J(1, 1) = x and thus, ι(x) = x ¯ |x|. Now, if a
bilinear operator b : E × E → F is order bounded and orthosymmetric, then,
according to [16; Theorem 9], x 7→ Φ•b(x) := b(x, |x|) (x ∈ E•) is an order bounded
linear operator and b = Φ•b ◦ J . Clearly, Φb := Φ•b ◦ ι

−1 is the required linear order
bounded operator. B

6.2. Thus, E• is the square of E with the canonical bimorphism J . Moreover E
and E• coincide as ordered sets and the vector lattice structure on E• is transplanted
from E¯ by means of ι. The inverse of the addition, the modulus of an element, and
the disjointness relation have the same meaning in E and E•, since (−1)∗x = (−1)x
for all x ∈ E. The sum of two disjoint elements is the same in E and E• because of
orthogonal additivity of ι. Continuity of the addition +̃ relative to relatively uniform
convergence implies that relatively uniformly convergent nets are the same in E and
E•. Thus, we arrive at the following corollary, see [16; Corollaries 10 and 11].

(1) If a vector lattice is relatively uniformly complete (laterally complete, De-
dekind σ-complete, Dedekind complete) then so is its square.

Denote by BL∼o (E;F ) the space of all order bounded orthosymmetric bilinear
operators from E ×E to F ordered by the cone of positive operators. (Note that if
F is Dedekind complete then BL∼o (E;F ) and BLor(E;F ) coincide.) The following
proposition is an immediate consequence of 6.1, cf. 2.7.

(2) Let E be a relatively uniformly complete vector lattice and F be an arbitrary
vector lattice. The correspondence b 7→ Φb from 6.1 is an isomorphism of ordered
vector spaces BL∼o (E;F ) and L∼(E¯, F ). Moreover, b is a lattice bimorphism if and
only if Φb is a lattice homomorphism.

Note that |J(x, y)| ≤ |x| ∨ |y| (x, y ∈ E), as |J(s, t)| ≤ max{|s|, |t|} (s, t ∈ R).
From this we deduce |x ¯ y| = |j ◦ J(x, y)| ≤ ι(|x|) ∨ ι(|y|) and thus, the following
useful fact is valid.

(3) The canonical bimorphism (x, y) 7→ x¯ y is order continuous.

6.3. Theorem. Let F be a relatively uniformly complete vector lattice. Then
there exists a relatively uniformly complete vector lattice F ◦ such that F is the
square of F ◦; in symbols, (F ◦)¯ = F . The vector lattice F ◦ with this property is
unique up to lattice isomorphism.

C The first part follows readily from 6.1 and [58; Proposition 4.8 (ii)]. Define an
addition u and a scalar multiplication ? on F by (see 3.6)

xu y := σ′(x, y), λ ? x := θ(λ)x (λ ∈ R; x, y ∈ F )

and put F ◦ := (F,u, ? ,≤) where ≤ is the given ordering in F . Then F ◦ is a relatively
uniformly complete vector lattice and (F ◦)• = F .

Now, suppose that for some vector lattice E there is a lattice isomorphism h of
E• onto F . Consider the homogeneous function σ′ on E• (with respect to +̃) and on
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F (with respect to +). By 3.4 h(σ′(x, y)) = σ′(h(x), h(y)) and taking into account
the definitions of +̃ and u we get h(x + y) = h(x) u h(y). Moreover, the relations
h(λ ∗ x) = λh(x) and h(λx) = λ ? h(x) are identical. Since E and E• as well as F
and F ◦ have the same ordering, h is a lattice isomorphism between E and F ◦. Thus,
the uniqueness of F ◦ follows and the proof is complete. B

Now, we present some further properties of the square of a vector lattice. Denote
by B(E) and P(E) the Boolean algebras of all bands and all band projections in
E, respectively. Let Suc(E) denotes the inclusion-ordered set of relatively uniformly
complete sublattices of E.

6.4. Theorem. Let E be a relatively uniformly complete vector lattice. For
L ∈ Suc(E) denote by ι̂(L) the set ι(L) := {x¯ |x| : x ∈ L} with the ordering and
vector operations induced from E¯. Then the following statements hold:

(1) the mapping L 7→ ι̂(L) constitutes an order isomorphism of the inclusion-
ordered sets Suc(E) and Suc(E

¯);

(2) L ∈ Suc(E) is an order (dense) ideal in E if and only if ι̂(L) is an order
(dense) ideal in E¯;

(3) ι̂ defines a Boolean isomorphism of B(E) onto B(E¯);

(4) ι̂(L) admits a band projection π if and only if L admits a band projection π ′

and in this case π(x¯ y) = (π′x)¯ y = x¯ (π′y) = (π′x)¯ (π′y);

(5) E has the projection property simultaneously with E¯ and in this case there
exists a Boolean isomorphism π 7→ π′ of P(E¯) onto P(E) such that π(x ¯ y) =
(π′x)¯ y = x¯ (π′y) = (π′x)¯ (π′y) for all x, y ∈ E and π ∈ P(E);

(6) if E is Dedekind complete then there exists an f -algebra isomorphism α 7→ α′

of Orth∞(E¯) onto Orth∞(E) such that α(x ¯ y) = (α′x) ¯ y = x ¯ (α′y) for all
α ∈ Orth∞(E¯) and x, y ∈ D(α), where D(α) denotes the domain of α.

C According to 6.1 and 6.2 we may assume that E¯ = E• and ¯ = J . Then ι is
the identity map in E and ι̂(L) = L• for every L ∈ Suc(E).

(1): By 6.1 the correspondence L 7→ L• is an inclusion preserving injection
from Suc(E) into Suc(E

•). To prove that it is bijection take a relatively uniformly
complete sublattice K in E•. Then by 6.3 L := K◦ is a relatively uniformly complete
sublattice in E and L• = K.

(2): In addition to (1) it should be noted that, by virtue of 6.2, the sublattices
L ⊂ E and L• ⊂ E• are order (dense) ideals or not simultaneously, since the modulus
and the disjointness relation have the same meaning in E and E•.

(3): In accordance with the remarks at the beginning of 6.2 the Boolean algebras
B(E) and B(E•) are identical as inclusion-ordered sets.

(4): Denote by ⊕ and ⊕̃ the direct sums relative to + and +̃, respectively. It
can be easily deduced from (2) and 6.1 that the equalities L•⊕̃(L•)⊥ = E• and
L⊕L⊥ = E are identical and the band projection in E• onto L• coincides with the
band projection in E onto L. This proves the first part of the statement. Now, if π
is the band projection in E• onto L• and π′ is the same map considered as the band
projection in E onto L, then according to 3.4 and 3.6 we have πJ(x, y) = J(π ′x, π′y)
for all x, y ∈ E. Since J is orthosymmetric (see 6.1), J(π ′x, π′y) = J(π′x, y).

(5): Follows immediately from (4).
(6): The Boolean isomorphism π 7→ π′ from (5) is uniquely extended to an

f -algebra isomorphism of Orth∞(E) onto Orth∞(E¯). Denote this isomorphism by
α 7→ α′. If α :=

∑n
l=1 λlπl, where λ1, . . . , λn ∈ R+ and {π1, . . . , πn} is a partition of
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unity in P(G), then, obviously, (π′l ◦ α
′)(x ¯ y) = π′l((λlπlx) ¯ y) = πl((αx) ¯ y))

for all l and x, y ∈ E. Summing over l yields α′(x ¯ y) = (αx) ¯ y = x ¯ (αy).
Finally, if α ∈ Orth∞(G)+ then α = sup (αξ) for some upward-directed family
(αξ) in Z (G). Whereas the elements of Z (E) are the relatively uniform limits of
orthomorphisms of the form

∑n
l=1 λlπl. Thus, to complete the proof, it remains to

appeal to o-continuity of the operator ¯, see 6.2 (3). B

7. Differences of symmetric bimorphisms

By way of illustration consider an application of Theorem 6.4 to the description
of differences of symmetric lattice bimorphisms.

7.1. Let E andG be vector lattices withGDedekind complete. As was observed in
[37] a linear operator T : E → G is, in a sense, determined up to an orthomorphism
from the family of the kernels of the strata πT (π ∈ P(G)) of T .

Theorem. Let S and T be linear operators from E toG. Then ker(πS) ⊃ ker(πT )
for all π ∈ P(G) if and only if there is an orthomorphism α of G such that S = αT .

Making use of this observation S. S. Kutateladze [37] proved the following
characterization of order bounded linear operator T representable as the difference
of two lattice homomorphisms.

7.2. Theorem. An order bounded operator T from E to G may be presented
as the difference of some lattice homomorphisms if and only if the kernel of each
stratum πT of T is a vector sublattice of E for all π ∈ P(G).

In view of 2.7 a similar approach should be successful for orthoregular bilinear
operators and we gain a possibility of studying some properties of b in terms of the
kernels of the strata. For an orthoregular bilinear operator b the set

sker(b) := {x ∈ E : b(x, |x|) = 0}

will be called the symmetric kernel of b.

7.3. Theorem. Let b and φ be orthoregular bilinear operators from E×E to G.
Then sker(πb) ⊃ sker(πφ) for all π ∈ P(G) if and only if there is an orthomorphism
α of F such that b = αφ.

C Apply 7.1 to Φb and Φφ. In view of 6.1 we have ker(π(Φb ◦ ι)) = ι−1(ker(πΦb))
and the inclusion sker(πb) ⊃ sker(πφ) is equivalent to ker(πΦb) ⊃ ker(πΦφ).
Therefore, by 7.1 there exists an orthomorphism α of G such that b = Φb¯ =
αΦφ¯ = αφ. B

7.4. Theorem. Let E andG be vector lattices with E relatively uniform complete
and G Dedekind complete. An orthoregular bilinear operator b : E×E → G may be
presented as the difference of two symmetric lattice bimorphisms if and only if the
symmetric kernel of each stratum πb of b is a vector sublattice of E for all π ∈ P(G).

C According to 6.2 (2) b = Φb¯ for some order bounded linear operator
Φb : E

¯ → G. Obviously, b is representable as the difference of two symmetric
lattice bimorphisms if and only if Φb is representable as the difference of two
lattice homomorphisms. By the above mentioned Kutateladze theorem the latter
is equivalent to the following: the kernel of each stratum πΦb of Φb is a vector
sublattice of E¯ for all π ∈ P(G). Now, it remains to observe that by 6.2 (2) the
kernel ker(π(Φb ◦ ι)) = ι−1(ker(πΦb)) coincides with the symmetric kernel of πb and
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by 6.4 (1) it is a vector sublattice in E if and only if ker(πΦb) is a vector sublattice
in E¯. B

7.5. S. S. Kutateladze [37] proved also that the modulus of an order bounded
operator T : E → G is the sum of some pair of lattice homomorphisms if and only
if the kernel of each stratum bT of T with π ∈ P(G) is a Grothendieck subspace
of the ambient vector lattice E. A similar result for order bounded orthosymmetric
bilinear operators is of interest. In [34] bilinear operators representable as finite sums
of disjointness preserving bilinear operators are also characterized.

8. Bilinear Maharam operators

In this section we prove that a positive orthosymmetric bilinear operator is order
interval preserving (order continuous) if and only if its linearization via square is
also order interval preserving (order continuous).

8.1. Let E and G be vector lattices and let b be a positive bilinear operator from
E × E into G. Say that b is order interval preserving or possesses the Maharam

property if, for every x, y ∈ E+ and 0 ≤ g ≤ b(x, y) ∈ G+, there exist 0 ≤ u ≤ x
and 0 ≤ v ≤ y such that g = b(u, v) or, in short, b ( [0, x] × [0, y] ) = [0, b(x, y)]
for all x, y ∈ E+. A positive order continuous bilinear operator with the Maharam
property is called a bilinear Maharam operator.

The order interval preserving phenomena is not sufficiently understood in the
bilinear context. In [9] the notion of almost right (or left) interval preserving bilinear
operator was considered and a bilinear version of Arendt’s Theorem on duality
between lattice homomorphisms and interval preserving operators was proved [9;
Theorem 14], cf. [4; Theorem 7.4].

Let φ be another positive bilinear operator from E × E into G. Then b is said
to be absolutely continuous with respect to φ whenever b(x, y) ∈ φ(x, y)⊥⊥ for all
0 ≤ x, y ∈ E. Evidently, any b ∈ φ⊥⊥ is absolutely continuous with respect to φ.

8.2. Theorem. Let E and G be Dedekind complete vector lattices, b : E×E → G
be a positive orthosymmetric bilinear operator and b = Φb¯ for a uniquely defined
positive linear operator Φb : E

¯ → G. The following conditions are equivalent:

(1) b is order interval preserving;

(2) b(x, ·) is order interval preserving for any 0 ≤ x ∈ E;

(3) b(·, y) is order interval preserving for any 0 ≤ y ∈ E;

(4) for any 0 ≤ x ∈ E and 0 ≤ u ≤ b(x, x) there exists y ∈ E, 0 ≤ y ≤ x such
that u = b(y, y);

(5) Φb is order interval preserving.

C The equivalence (2) ⇔ (3) is trivial, since b is symmetric, see 2.3. The
implication (2) ⇒ (1) is also obvious. Take 0 ≤ x ∈ E and 0 ≤ v ∈ G with
v ≤ b(x, x). By (1) we can choose x1, x2 ∈ [0, x] such that v = b(x1, x2). Put

x0 := x
1/2
1 x

1/2
2 and observe that x0 ¯ x0 = x1 ¯ x2. Indeed, it suffices to apply the

equality (x ¯ y)p(u ¯ v)1−p = (xpu1−p) ¯ (ypv1−p) (see 5.1) with p = 1/2. Thus,
b(x0, x0) = Φb(x0 ¯ x0) = Φ(x1 ¯ x2) = b(x1, x2) = v and (1) ⇒ (4) follows. The
implication (4) ⇒ (5) is immediate from the representation (Φb ◦ ι)(x) = b(x, |x|)
(x ∈ E), see 6.1.

Finally, assuming Φb to be order interval preserving, it suffices to prove that so is
b(·, y) for every 0 ≤ y ∈ E. Let x, y ∈ E+ and v ≤ b(x, y) = Φb(x¯ y). By (5) there
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exists 0 ≤ z ≤ x¯ y such that v = Φb(z). By the Krĕıns–Kakutani Representation
Theorem there is an isomorphism h from the principal ideal Eu with u := x+ y + z
onto C(S) for some extremally disconnected compact Hausdorff space S. Consider
two mappings P,Q : C(S)→ C(S) given by

P (f) := θ ◦ f = sgn(f)f 2 = f |f |,

Q(f) := θ−1 ◦ f = sgn(f)
√
|f |.

It is easily seen that P and Q are multiplicative and order preserving bijections
with P = Q−1. Denote f = h(x), g = h(y), and k = h(ι−1(z)). Then by 3.4
h(J(h−1(f), h−1(g))) = J ◦ (f, g) = Q(fg). Since k ≤ Q(fg), we have P (k) ≤ fg.
Choose a function f0 ∈ C(S) with 0 ≤ f0 ≤ 1 and P (k) = f0fg and denote
f1 := f0f . Then h(ι−1(z)) = k = Q(f1g) = h(J(x1, y) where x1 := h−1(f1) and,
taking into consideration 6.1, we get z = ι ◦ J(x1, y) = x1 ¯ y. It remains to apply
Φb to the last equality and use again 6.1: b(x1, y) = Φb(x1 ¯ y) = Φb(z) = v. Thus,
(5) ⇒ (2) and the proof is complete. B

8.3. Consider vector lattices E and G with E relatively uniformly complete and
G Dedekind complete and an orthoregular operator b : E ×E → G. The symmetric

null ideal Nb and the symmetric carrier Cb of b are defined by

Nb := {x ∈ E : |b|(|x|, |x|) = 0},

Cb := N
⊥
b = {x ∈ E : x ⊥ Nb}.

Since b(x, x) = b(|x|, |x|) (x ∈ E) for any orthosymmetric b, the symmetric null ideal
Nb can be defined also by Nb := {x ∈ E : |b|(x, x) = 0}. The symmetric null ideal
is indeed an order ideal by virtue of 6.1 and 6.4 (2), since NΦb

= ι(Nb). If b is order
continuous then Nb is a band in E. If b ≥ 0 and Nb = {0} then b is called strictly

positive. An orthosymmetric positive bilinear operator b is strictly positive if and
only if it is positively definite, see 2.1.

An orthoregular bilinear operator b is singular if Nb contains some order dense
ideal or, equivalently, Nb is an order dense ideal in E. Indeed, if b vanishes on E1×E2

for some order dense ideals E1 and E2 in E, then E0 := E1∩E2 is an order dense ideal
which is contained in Nb. Conversely, if an order dense ideal E0 ⊂ E is contained in
Nb, then b vanishes on E0 × E0.

8.4. Let E, G, b, and Φb be as in 8.2. The following assertions hold:

(1) b is order continuous if and only if Φb is order continuous;

(2) b is singular if and only if Φb is singular;

(3) b is strictly positive if and only if Φb is strictly positive;

(4) b is a Maharam operator if and only if Φb is a Maharam operator.

C (1): If Φb is order continuous then b is also order continuous as the composite
of two order continuous maps, see 6.1 and 6.2 (3). Conversely, assume that b is order
continuous and a net (uα) in E¯ decreases to zero, i.e. uα ↓ 0 in E¯. Put xα := ι−1(uα)
and note that xα ↓ 0 in E. Thus, by 6.1 we have

Φb(uα) = (Φb ◦ ι)(xα) = b(xα, xα)→ 0.

(2), (3): The equality NΦb
= ι(Nb) and 6.4 (2) imply that Nb and NΦb

are
order dense ideals in E and E¯ simultaneously. Moreover, Nb = {0} if and only if
NΦb

= {0}. Note, that order completeness of E is superfluous in (1)–(3).
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(4): Follows from (1) and 7.2. B

8.5. The class of linear Maharam operators was first studied by D. Maharam
in [48] (see also the survey paper [50]). W. A. J. Luxemburg and A. R. Schep [47]
extended a portion of Maharam’s theory to the case of positive operators in Dedekind
complete vector lattices. The terms “Maharam property” and “Maharam operator”
were introduced in [47] and [26], respectively (more details see in [27]). The Maharam
property transplanted to the entourage of convex operators is presented in [32].
Every linear Maharam operator is an interpretation of some order continuous linear
functional in an appropriate Boolean-valued model, see [27]. This Boolean-valued
status of the concept of Maharam operator was established in [26].

9. A Radon–Nikodým type theorem

Making use of Theorem 8.4 we are able to transfer some results from linear
Maharam operators to orthosymmetric bilinear Maharam operators. In this section
we show that the versions of the Radon–Nikodým Theorem and the Hahn
Decomposition Theorem are valid for orthosymmetric Maharam operators. For a
bilinear operator φ ∈ BL∼o (E;G) denote Eφ := Cφ and Gφ := φ(E × E)⊥⊥.

9.1. Theorem. Let E and G be Dedekind complete vector lattices and let φ be a
positive orthosymmetric bilinear Maharam operator from E×E into G. Then there
exists an f -algebra isomorphism h of the universally complete f -algebra Orth∞ (Gφ)
onto an order closed f -subalgebra in Orth∞ (Eφ) such that the following holds:

(1) h induces a Boolean isomorphism of P(Gφ) onto an order complete subalgebra
of the Boolean algebra P(Eφ);

(2) h induces an f -algebra isomorphism of Z (Gφ) onto an order closed f -sub-
algebra in Z (Eφ);

(3) for every positive orthosymmetric order continuous bilinear operator b from
E × E to G absolutely continuous with respect to φ we have

π ◦ b(x, y) = b(h(π)x, y) = b(x, h(π)y) (π ∈ Orth∞ (Gφ)+; x, y ∈ D (π))

and in this case b is a Maharam operator.

C Without loss of generality, we may assume that G = Gφ and E = Eφ. Put
Φ:= Φφ. By [47; Theorem 2.2] (see also [27; Theorem 3.4.3]) there exists a Boolean
isomorphism h′ of P (G) onto some order complete subalgebra in P(E¯) such that
π ◦ Φb = Φb ◦ h

′(π) for all π ∈ P(G). Take a Boolean isomorphism h′′ : π 7→ π′

between P(E¯) and P(E) as in 6.4 (5) and put h = h′′ ◦ h′. Then h is a Boolean
isomorphism of P(G) onto an order complete subalgebra of P(E) and

π ◦ b(x, y) = π ◦ Φb(x¯ y) = Φb ◦ h
′(π)(x¯ y)

= Φb((h
′(π)′x¯ y) = b(h(π)x, y) (x, y ∈ E; π ∈ P(G)).

The Boolean isomorphism h is uniquely extended to an order continuous f -
algebra isomorphism from Orth∞(G) onto the order complete f -subalgebra in
Orth∞(E) constituted by those elements in Orth∞(E) whose spectral functions
take their values in the Boolean algebra h(P(G)). Observe that b is absolutely
continuous with respect to φ if and only if Φb is absolutely continuous with respect
to Φ. Finally, we repeat the arguments from 6.4 (6) replacing ¯ by b and appealing
to order continuity of b. B
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9.2. Theorem (Radon–Nikodým). Let E and G be Dedekind complete vector
lattices and let b and φ be orthosymmetric order continuous positive bilinear
operators from E × E to G with φ possessing the Maharam property. Then the
following assertions are equivalent:

(1) b ∈ {φ}⊥⊥;

(2) b is absolutely continuous with respect to φ;

(3) there exists an orthomorphism 0 ≤ ρ ∈ Orth∞(E) such that

b(x, y) = φ(ρx, y) = φ(x, ρy) (x, y ∈ D(ρ));

(4) there exists an increasing sequence of positive orthomorphisms (ρn), ρn ∈
Orth(E), such that

b(x, y) = sup
n
φ(ρnx, y) = sup

n
φ(x, ρny) (x, y ∈ E+).

Moreover, if 0 ≤ b ≤ φ, then b = φ◦(ρ×IE) = φ◦(IE×ρ) for some orthomorphism
ρ ∈ Orth(E) with 0 ≤ ρ ≤ IE.

C By virtue of 6.1, 6.2 (2), 6.4 (6), 8.5, and 9.1 each of the conditions (1)–(4) is
equivalent to the corresponding condition for the linear operators Φb and Φφ. Thus,
it remains to apply the Radon–Nikodým type theorem for linear Maharam operators
established by W. A. J. Luxemburg and A. Schep in [47; Theorem 3.3], see also [27;
Theorem 3.4.9]. B

9.3. Theorem (Nakano). Let E and G be Dedekind complete vector lattices
and let φ be an orthosymmetric bilinear Maharam operator from E × E to G.
Orthoregular bilinear operators b1, b2 ∈ {φ}⊥⊥ are disjoint if and only if their
symmetric carriers Cb1 and Cb2 are disjoint.

C The proof goes along the same lines taking into consideration the linear version
of the required statement. Put Φi := Φbi and Φ := Φφ. By 6.2 (2) b1 and b2 are
disjoint if and only if Φ1 and Φ2 are disjoint and, moreover, Φ1 and Φ2 belong to
Φ⊥⊥. According to 8.4 (3) Φ is a linear Maharam operator. By [27; Theorem 3.4.6 (1)]
the disjointness of Φ1 and Φ2 is equivalent to the disjointness of their carriers CΦ1

and CΦ1 . Now it suffices to observe that, by 6.1 and 6.4 (3), the carrier CΦi
coincides

with the symmetric carrier Cbi (i = 1, 2). B

Worthy of mention is the following corollary to Theorem 9.3: The correspondence
π 7→ φ ◦ (π × π) is an isomorphism of P(Cφ) onto the Boolean algebra E(φ) of all
components of φ. In particular, by applying this result to φ := |b|, the following
variant of Hahn Decomposition Theorem is easily deduced.

9.4. Theorem (Hahn Decomposition Theorem). Let E and G be Dedekind
complete vector lattices and let b : E×E → G be an order bounded orthosymmetric
bilinear operator with |b| a Maharam operator. Then there exists a band projection
π ∈ P(E) such that b+ = b ◦ (π × π) and b− = b ◦ (π⊥ × π⊥).

10. Concluding remarks

Denote by BLon(E;G) the set of orthoregular order continuous bilinear operator
from E × E to G. According to 6.2 (2) and 8.4 (1) the bijection b 7→ Φb constitutes
an isomorphism of vector lattices BLon(E;G) and Ln(E

¯, G). This fact enables us to
transfer known results on regular order continuous linear operators to orthoregular
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order continuous bilinear operators. Consider some further possibilities assuming
that E is relatively uniformly complete and G is Dedekind complete.

10.1. From 6.2 (2), 8.4 (1), and [4; Theorem 4.6] one can obtain the following
description of the order continuous component bn of b ∈ BLor(E;G):

bn(x, x) = inf{supα b(xα, xα) : 0 ≤ xα ↑ x} (0 ≤ x ∈ E);

bn(x, y) =
1

2

(
bn(x+ y, x+ y)− bn(x, x)− bn(y, y)

)
(0 ≤ x, y ∈ E);

bn(x, y) = bn(x
+, y+)− bn(x

+, y−)− bn(x
−, y+) + bn(x

−, y−) (x, y ∈ E).

Along similar lines, some other formulas for calculating specific components of an
orthosymmetric positive bilinear operator can be derived, see [27; Section 3.2].

10.2. The orthoregular order continuous bilinear operators can be characterized
in terms of symmetric null ideals similar to that of the linear operators, see [4;
Theorem 4.8]: a bilinear operator b ∈ BLor(E;G) is order continuous if and only if
the symmetric null ideal Nd is a band for every bilinear operator d in the principal
ideal generated by b in BLor(E;G).

10.3. By the same arguments as in 6.2 (1) one can observe that a vector lattice
E has the Egorov property if and only if E¯ has the Egorov property. Denote
by BLos(E;G) the subset of BLor(E;G) consisting of all singular operators, see
1.6. Now, making use of 8.4 and [27; Theorem 4.4.10], we arrive at the following
strong form of the Yosida–Hewitt decomposition: If E is a vector lattice with the
Egorov property and G is a Dedekind complete vector lattice with the countable sup
property (see [4; p. 52]), then BLos(E;F ) = BLon(E;F )

⊥ ∩BLor(E;G) or, which is
the same,

BLor(E;G) = BLon(E;F )⊕BLos(E;F ).

10.4. Let G be a Dedekind σ-complete weakly σ-distributive vector lattice, F be
a majorizing sublattice of E, and b be an orthosymmetric positive bilinear operator
from F × F to G. We say that b is sequentially E-continuous if infn b(xn, xn) = 0
for any decreasing sequence (xn) in F such that infn xn = 0 in E.

The isomorphism ι̂ between the inclusion-ordered sets Suc(E) and Suc(E
¯)

(see 6.4 (1)) sends σ-closed sublattices to σ-closed sublattices and hence for any
F ∈ Suc(E) we have (F σ)¯ = (F¯)σ, where F σ denotes the σ-closed sublattice of E
generated by F . By applying the Kantorovich–Mattes–Wright Extension Theorem
[27; Theorem 4.5.3] to Φb, we get the following conclusion: every sequentially
E-continuous b ∈ BLor(F ;G) has an extension to an orthosymmetric sequentially
E-continuous positive bilinear operator from F σ × F σ to G.

10.5. With the use of similar arguments, the Maharam extension and its
functional representation (well known in the linear case, see [27; Sections 4.5 and 6.3]
and [46]) can be also developed for an orthosymmetric positive bilinear operator.

10.6. Let J(E,G) be the band of Lr(E,G) generated by the set of finite-rank
order continuous operators: J(E,G) := (Ln(E,R) ⊗ G)⊥⊥. Similarly, denote by
BLori(E;G) the band in BLor(E;G) generated by BLon(E;R) ⊗ G. The elements
of J(E,F ) and BLori(E;G) are called almost integral operators. By virtue of
6.2 (2) and 8.4 (1) the bijection b 7→ Φb constitutes an isomorphism of vector
lattices BLori(E;G) and J(E¯, G). In combination with Strizhevskĭı’s result [56]
(see also [27; Theorem 2.5.3 (2)]) this fact leads to the following: Let E and G
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be order complete vector lattices and let BLon(E;R) separates the points of E(
= (∀ 0 < x ∈ E) (∃ b ∈ BLon(E;R)) b(x, x) > 0)

)
. If E is diffuse then every

symmetric lattice bimorphism is disjoint from the band BLori(E;G). If F is diffuse
then every orthosymmetric bilinear Maharam operator is disjoint from BLori(E;G).

10.7. Every orthosymmetric bilinear Maharam operator is a Boolean-valued
interpretation of an orthosymmetric order continuous positive bilinear functional,
cf. [27; Theorem 4.6.10 (6)]. This approach provides us with the useful transfer
principle from orthosymmetric order continuous positive bilinear functionals in
Boolean-valued set theory to orthosymmetric bilinear Maharam operators.

10.8. A set of band projections P in BLor(E;G) is said to be generating if for
all positive b ∈ BLor(E;G) we have

b(x+, |x|) = sup{(pb)(x, |x|) : p ∈ P} (x ∈ E).

Given a positive operator b ∈ BLor(E;G), denote by E(b) the Boolean algebra of all
components of b and define the set of elementary components P∨(b) of b by

P
∨(b) :=

{ n∑

k=1

πkpkb : p1, . . . , pn ∈P; π1, . . . , πn ∈ P(G);πk ◦ πl = 0 (k 6= l)

}
.

The following up-down theorem can be deduced from Theorem 6.1 and [33; Theorem
3.3]: A set P of band projections in BLor(E;G) is generating if and only if for every
orthosymmetric positive bilinear operator b : E ×E → G we have E(b) = P∨(b)↑¼↑.
One can obtain different up-down formulas by specifying generating sets [33, 57];
further comments see in [4, 27].

10.9. Hölder type inequalities from Sections 5 can be applied to deduce some
estimates for the Hadamard weighted geometric means of positive kernel operators
in Banach function spaces. For example, the inequalities (1) of [18; Theorem 2.1]
and (4) of [18; Theorem 2.2] are the easy consequences of 5.2 (f(k) := ‖K‖) and 5.5
(b(h, k) := h · k, f(h) := H, g(k) := K), respectively.

10.10. A bilinear operator b : E × E → E is said to be band preserving if for
all x, y ∈ E we have b(x, y) ∈ {x}⊥⊥ ∩ {y}⊥⊥ or, equivalently, b(x, y) ⊥ z for
any z ∈ E provided that x ⊥ z or y ⊥ z. Evidently, a band preserving bilinear
operator is orthosymmetric. Every order bounded band preserving bilinear operator
b : E×E → E admits a unique representation b(x, y) = β(x¯y) (x, y ∈ E) with β ∈
Orth(E¯), see 2.7 and 6.4 (3). The following question can be considered as a version
of Wickstead’s problem (see [27, 30]): Under what conditions all band preserving
bilinear operators in a vector lattice are order bounded? A nice characterization
of universally complete vector lattice with this property can be easily deduced
from the corresponding result for linear operators due to A. E. Gutman [23]): For
an universally complete vector lattice G the following are equivalent: (1) every band
preserving bilinear operator in G is order bounded; (2 ) the base B(G) is a σ-
distributive Boolean algebra.
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APPENDIX1

On a Property of the Base of K-space

of Regular Operators and Some of Its Applications

A. G. KUSRAEV

Abstract. An interplay between bases of Dedekind complete vector lattices of regular operators acting respectively
from a vector lattice and from its majorizing sublattice into the same Dedekind complete vector lattice is studied.
The existence of an order continuous simultaneous extension operator from a majorizing sublattice to the ambient
vector lattice is established. Some applications to extension of positive bilinear operators and representation of
regular functionals are also given.

Mathematics Subject Classification (2000): 46A40, 47B65.

Key words: Boolean algebra, vector lattice, regular operator, lattice isomorphism, positive bilinear operator,
simultaneous extension.

Introduction

Let Ê be an Archimedean vector lattice2 and let E be its majorizing (= for every x ∈ Ê

there is x′ ∈ E such that |x| ≤ x′) sublattice3. In Section 1 we study the relationship between
bases (= Boolean algebras of bands4) of Dedekind complete vector lattices5 of regular operators
acting respectively from E and Ê into the same Dedekind complete vector lattice. In Section 2
we construct an extension operator from L (E,F ) to L (Ê, F ) preserving not only positivity, that
is possible by virtue of the Kantorovich Extension Theorem ([1; Theorem X.3.1]), but also the
lattice operations in vector lattice of regular operators. In Section 3 we consider some aspects of
the extension problem for bilinear operators. Finally, in Section 4 a representation result for the
space of regular functionals on an arbitrary vector lattice is given.

1. Saturated bands

In the sequel we fix the following notation, unless otherwise stated: Let Ê be an Archimedean
vector lattice, E its majorizing sublattice, and F an arbitrary Dedekind complete vector lattice.
Denote by L (E,F ) the space of all regular operators from E into F and let L +(E,F ) stands
for the cone of positive operators. If K is a band in a Dedekind complete vector lattice, then PrK
denotes the band projection onto K. The identity mapping on a set A will be denoted by idA. Let E

and Ê stand for the bases of Dedekind complete vector lattices L (E,F ) and L (Ê, F ), respectively.
The restriction of a regular operator Û : Ê → F to E is denoted by rÛ , i.e. rÛ := r(Û) := Û |E .

The following assertion is almost evident.

Lemma 1. The restriction operator r̂ : L (Ê, F ) → L (E,F ) is linear, order continuous, and

strictly isotonic.

The latter means that Û > 0 implies rÛ > 0.

Lemma 2. If (Ûξ)ξ∈Ξ is an increasing net of positive operators in L (Ê, F ) and the net (rÛξ)ξ∈Ξ
is order bounded in L (E,F ), then (Ûξ)ξ∈Ξ is likewise order bounded and

r

(
sup
ξ∈Ξ

Ûξ

)
= sup

ξ∈Ξ
r
(
Ûξ

)
.

1This is a translation of the original Russian work of the same title, Sobolev Institute Press c©1977, Novosibirsk.
Translated by the author with a slight modification of notation and terminology. The vector lattices under study are
denoted by E, F , and G instead of X, Y , and Z. The terms used in the original text are indicated in the footnotes.

2Vector lattice = K-lineal.
3Sublattice = Sublineal.
4Band = Component.
5Dedekind complete vector lattice = K-space = Kantorovich space.
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Proof. Denote U = supξ r(Ûξ) and take x ∈ Ê+ and x′ ∈ E with x ≤ x′. Then Ûξx ≤ Ûξx
′ =

(rÛξ)x
′ ≤ Ux′ for every ξ ∈ Ξ; therefore, the equality Ûx = sup Ûξx (x ∈ Ê) defines correctly a

regular operator Û which is the least upper bound of the net (Ûξ)ξ∈Ξ. The second assertion follows

from order continuity of the restriction operator r and from the equalities U = o- limξ∈Ξ rÛξ and

Û = o- limξ∈Ξ Ûξ. 2

We also need the following easy corollary to the Hahn–Banach–Kantorovich Theorem (see [4]).

Lemma 3. Let U be a positive operator from E to F and let V̂ be a positive operator from

Ê to F with U ≤ rV̂ . Then there exists a linear extension Û of U to the whole of Ê such that

0 ≤ Û ≤ V̂ .

Also observe that if U, V ∈ L +(E,F ) and Û and V̂ are arbitrary positive extensions
respectively of U and V to the whole of Ê, then the disjointness of U and V implies the disjointness
of Û and V̂ (see [1; Lemma X.4.1])

Proposition 1. If K is a band in L (Ê, F ) and K0 is an order dense ideal 6 in K, then r(K)
is a band in L (E,F ) and r(K0) is an order dense ideal in r(K).

Proof. First observe that if an operator U = rÛ ∈ r(K0) is positive, then U ≤ r|Û | and, by
Lemma 3, it has a positive extension lying in K0. Let 0 ≤ V ≤ Û , where V ∈ L (E,F ) and
0 ≤ Û ∈ K0, and let V̂ be a positive extension of V with V̂ ≤ Û . Then V ∈ r(K0), since V̂ ∈ K0.
If an arbitrary regular operator V ∈ r(K0) has an extension V̂ lying in K0, then by Lemma 3 and
above observation we have V ∈ r(K0), since |V | ≤ r|V̂ | and |V̂ | ∈ K0. Thus, r(K) and r(K0) are
order ideals7 in L (E,F ) and r(K0) ⊂ r(K).

Assume that 0 ≤ U ∈ r(K)dd and denote U = {U ′ ∈ r(K0) : 0 ≤ U ′ ≤ U}, Û = {Û ′ ∈ K0 :

r(Û ′) ∈ U}. The inclusion ordered set of upwards directed subsets of Û satisfy the hypotheses

of the Zorn Lemma and thus there exists a maximal upward directed subset Û0 ⊂ Û. The set
U0 = {rÛ : Û ∈ Û0} ⊂ U is bounded above and by Lemma 2 there exists sup Û0 = Û0 ∈ K;
moreover, r(Û0) = supU0. Suppose U0 = supU0 < U . Choose V ∈ r(K0) such that 0 < V ≤ U−U0

and a positive extension V̂ of V is contained in K0
8. Then we have Û0 + V̂ ∈ Û \ Û0, since

0 < U0 + V ≤ U and Û0 + V̂ > Û ′ for every Û ′ ∈ Û0. But the last assertion contradicts to the
maximality of Û0. Consequently, U = supU0 = r(sup Û0) = r(Û0) ∈ r(K). 2

Definition. A band K ∈ Ê is said to be saturated if, for any positive operator Û in K, all
positive extensions to the whole of Ê of the restriction rÛ are likewise contained in K. Denote by
Ê0 the set of all saturated bands in L (Ê, F ).

Proposition 2. The set Ê0 is a complete subalgebra of the Boolean algebra Ê.

Proof. Assume that K is a saturated band, 0 ≤ Û ∈ Kd, and certain positive extension V̂ of rÛ
is not contained in Kd. Under this conditions the restriction V1 of PrK V̂ satisfies the inequalities
0 < V1 ≤ U = rÛ and if V̂1 is its positive extension majorized by Û , then V̂1 ∈ Kd. At the same
time V̂1 ∈ K, since K is saturated. This contradiction proves that Kd is also saturated. Moreover,
it is evident that the intersection of an arbitrary family of saturated bands is a saturated band and
thus Ê0 is a complete subalgebra of Ê. 2

Denote by the same letter r the mapping K 7→ r(K) (K ∈ Ê) and let q stands for the mapping

L 7→ {Û ∈ L
+(Ê, F ) : rÛ ∈ L}dd (L ∈ E).

Theorem 1. The mapping r : Ê0 → E is an isomorphism of Boolean algebras Ê0 and E;

moreover, r−1 = q.

Proof. If K ∈ Ê0, Û ∈ L +(Ê, F ), and U = r(Û), then Û dK implies U d r(K). Otherwise
U ∧ V = W > 0 for some positive V ∈ r(K) and, having chosen a positive extension Ŵ of W with
Ŵ ≤ Û , we would come to a contradictory relation Ŵ ∈ K. Hence, it follows that r(K) d r(Kd)

for an arbitrary K ∈ Ê0. Furthermore, for the same U and Û the relations U d r(Kd) and U d r(K)
imply that Û dKd and Û dK and hence U = 0. Therefore, we can conclude that r(K)d = r(Kd).

6Order dense ideal = Foundation
7Order ideal = Normal sublineal.
8Since 0 < U −U0 ∈ r(K)dd, one can choose 0 < W ≤ U −U0 with a positive extension Ŵ ∈ K; therefore, there

exists V̂ ∈ K0 with 0 < V̂ ≤ Ŵ and thus 0 < V = r(V̂ ) ≤W ≤ U − U0.
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Now, assume that K1 and K2 are saturated bands. The inclusion r(K1 ∩K2) ⊂ r(K1)∩ r(K2)
is obvious. To verify the converse inclusion observe that if a positive operator U is contained in
r(K1) ∩ r(K2), then every its positive extension to the whole of Ê is contained in K1 and in K2

and hence in K1 ∩ K2. Thus, we conclude that r : Ê0 → E is a Boolean homomorphism and it
remains to observe that the equality r(K) = {0} obviously implies K = {0}.

To check the equality r−1 = q we have to verify that q ◦ r(K) = K for any K ∈ Ê0 and
r ◦ q(L) = L for any L ∈ E. The first claim is obvious. At the same time if L ∈ E, then r ◦ q(L) ⊃ L

by definition of r and q, while the relations 0 ≤ Û ∈ q(L) and r(Û) ∈ Ld imply U ∈ q(L)d, i. e.
U = 0. Thus, r ◦ q(L) = L and the proof is complete. 2

Proposition 3. Two positive operators U, V ∈ L (E,F ) are disjoint if and only if any their

positive extensions Û , V̂ ∈ L (Ê, F ) to the whole of Ê are likewise disjoint.

Proof. Denote {Û} = {Û ∈ L +(Ê, F ) : r(Û) = U} and prove that {Û}dd = q(Udd). Let
V̂ ∈ L +(Ê, F ) and V = r(V̂ ) ≤ αU for a positive real α. Put W = αU − V and extend W to
a positive operator Ŵ ∈ L +(Ê, F ). Then r(Ŵ + V̂ ) = U and V̂ ≤ Ŵ + V̂ and consequently
V̂ ∈ {Û}. This implies that {Û}dd contains the set {V̂ : (∃ 0 < α ∈ R) r(|V̂ |) ≤ αU}, an order
dense ideal in q(Udd), and therefore {Û}dd ⊃ q(Udd). The converse inclusion is obvious. Now, if
{Û} and {V̂ } are disjoint, then U and V are likewise disjoint by Theorem 1. 2

2. Simultaneous extension operator

Let U ∈ L +(E,F ) and Û ∈ L +(Ê, F ) is a positive extension of U . Take U and Û as weak order
units in the respective bands Udd and Ûdd and denote by E(U) and E(Û) the Boolean algebras of
all components9 of U and Û , respectively. Since q(K) ∩ Ûdd 6= {0} for any band {0} 6= K ⊂ Udd,
the mapping K 7→ q(K) ∩ Ûdd is a Boolean isomorphism. Therefore, the mapping defined by

ϕe = Prq(edd)Û (e ∈ E(U)) (1)

is likewise a Boolean isomorphism of E(U) onto a complete subalgebra of the Boolean algebra
E(Û).

Lemma 4. If a positive operator e ∈ Udd is a component of U , then ϕe is its extension. In

symbols, r ◦ ϕ = idE(U).

Proof. The required assertion is equivalent to the following: PrKU = r(Prq(K)Û) for every band

K ⊂ Udd. To prove this it suffices to observe that

{U ′ ∈ K : 0 ≤ U ′ ≤ U} = {r(Û ′) : Û ′ ∈ q(K), 0 ≤ Û ′ ≤ Û}.

Taking this into consideration we deduce

PrKU = sup{U ′ ∈ K : 0 ≤ U ′ ≤ U}

= sup{r(Û ′) : Û ′ ∈ q(K), 0 ≤ Û ′ ≤ Û} = r(Prq(K)Û). 2

Lemma 5. There exists an order continuous lattice isomorphism10 of Udd into Ûdd such that

r ◦ s = idUdd .

Proof. First we prove that the spectral integral

sV =

∞∫

−∞

λ dϕ(eVλ ), (2)

exists for each V ∈ Udd, where
(
eVλ
)
λ∈R

is the spectral system11 (or spectral function) of V and

ϕ is an order bounded measure on E(U), with values in the Dedekind complete vector lattice Ûdd,

9Component (of U) = Unit element (with respect to U).
10Lattice isomorphism = Algebraic and structure isomorphism.
11with respect to U , i. e. eVλ := Pr(

(λU−V )+
)ddU .
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given by (1). It suffices to ensure that at least one of the integral sums exists (see [2; Ch. VIII,
§ 1.21]). Take a partition of the real axis

−∞← · · · < λ−n < · · · < λ−1 < λ0 < λ1 < · · · < λn < · · · → +∞

with δ = supn(λn − λn−1) < +∞. Then the series
∞∑
−∞

ln
(
eVλn − eVλn−1

)
where λn−1 ≤ ln ≤ λn,

is convergent and consequently the series
∞∑
−∞

|ln|
(
eVλn − eVλn−1

)
is likewise convergent. This means

that the sequence of partial sums Sk =
k∑

n=−k

|ln|
(
eVλn − eVλn−1

)
is increasing, order bounded, and

S = supk Sk is the sum of the latter series. Denote Ŝk =
k∑

n=−k

|ln|ϕ
(
eVλn−eVλn−1

)
. Since the sequence

(Ŝk) is increasing and r(Ŝk) = Sk for all k ∈ N, we can apply Lemma 2 and conclude that the

sequence (Ŝk) is bounded above, i. e. the series
∞∑
−∞

|ln|ϕ
(
eVλn − eVλn−1

)
is convergent, and with it

the series
∞∑
−∞

lnϕ
(
eVλn − eVλn−1

)
. Thus, the spectral integral (2) exists and the operator s defined

by (2) is order continuous (see [1; Ch. VIII, § 10]). Moreover,

r ◦ s(V ) = r

(
lim
δ→0

∞∑

−∞

lnϕ
(
eVλn − eVλn−1

)
)

= lim
δ→0

∞∑

−∞

lnr ◦ ϕ
(
eVλn − eVλn−1

)
= V.

Clearly, se = ϕ(e) ∈ E(Û) for every e ∈ E(U), which imply by [2; Ch. VII, Theorem 3.13] that s

is multiplicative and hence preserves the lattice operations, see [2; Ch. VII, Theorem 3.23]. 2

Theorem 2. Let Ê be an Archimedean vector lattice, let E be its majorizing sublattice, and let

F be a Dedekind complete vector lattice. Then there exists an order continuous lattice isomorphism

s from L (E,F ) into L (Ê, F ) such that r ◦ s = idL (E,F ).

Proof. Let (Uξ)ξ∈Ξ be a total family of pairwise disjoint positive operators in L (E,F ) and

for every ξ ∈ Ξ choose a positive extension Ûξ of Uξ to the whole of Ê. For an arbitrary V ∈
L +(E,F ) put Vξ = PrUdd

ξ
V and define sV = supξ∈Ξ sξVξ, where sξ is the order continuous lattice

isomorphism corresponding to the pair (Uξ, Ûξ) by Lemma 5. Clearly, Lemma 2 implies that sV is
correctly defined for every operator V ∈ L +(E,F ). It is easily seen that s is additive and positively
homogeneous and can be extended to L (E,F ) by differences. Making use of the properties of sξ
we can also ensure that s is order continuous and preserves the lattice operations. Moreover, for
V ∈ L +(E,F ) and x ∈ E+ we have

(r ◦ s)(V )x = r
(
supξ∈Ξ sξ(Vξ)

)
x =

(∑
ξ∈Ξ

r ◦ sξVξ

)
x =

(∑
ξ∈Ξ

Vξ

)
x = V x

and the proof is complete. 2

Remark 1. The “simultaneous extension operator” s is multiplicative12. Indeed, if V ≥ 0,
W ≥ 0 and the product V ·W exists in L (E,F ), then putting Vξ = PrUdd

ξ
V and Wξ = PrUdd

ξ
W

we observe that Vξ ·Wξ exists for all ξ ∈ Ξ and V ·W = supξ Vξ ·Wξ. Therefore, s(V ·W ) =
s(supξ Vξ ·Wξ) = s(supξ Vξ · supξ Wξ) = supξ s(Vξ) · supξ s(Wξ) = sV · sW .

Remark 2. The set im(s) = {sU : U ∈ L (E,F )} is an order closed sublattice in L (Ê, F )
and there exist an order continuous positive projection onto it, namely P = s ◦ r. Indeed, P 2 =
s ◦ (r ◦ s) ◦ r = s ◦ r = P . The projection P is majorized by the identity operator (i. e. P is a
band projection) if and only if every regular operator admit a unique regular extension to all of Ê.
To ensure this, we need only to observe that if a positive operator U has two comparable positive
extensions, say Û1 and Û1 with Û1 ≤ Û1, then the relations r(Û2− Û1) = 0 and Û2− Û1 ≥ 0 imply
that Û2 − Û1 = 0, i.e. Û1 = Û2.

Remark 3. If Ê is the Dedekind completion of E, then we can choose s so that sV is normal
for any normal operator V .

12A partial multiplication in L (E,F ) is defined by taking Uξ as an order unit in {Uξ}
dd.



Appendix 31

Remark 4. If E is an arbitrary vector sublattice in Ê, then Theorem 2 remain valid provided
that every positive operator from E1 to F admit a positive extension to the whole of Ê, where E1

denotes the order ideal in Ê generated by E. It is well known that for a simultaneous extension
operator from E1 to Ê can be taken the minimal extension m defined by

(mU)x = sup{Ux′ : 0 ≤ x′ ≤ x, x′ ∈ E1} (x ∈ Ê+, U ∈ L
+(E1, F )).

Now, if s1 stands for the simultaneous extension from E to E1, then s = s1 ◦ m is the desired
simultaneous extension from E to Ê.

3. Extension of bilinear operators

Now we turn our attention to the problem of extension of bilinear operators. Let E1 and E2 be
vector lattices and F be a Dedekind complete vector lattice. A bilinear operator b : E1 × E2 → F

is called positive if b(x, y) ≥ 0 for all x ∈ E+
1 and y ∈ E+

2 , and regular if it can be represented
as the difference of two positive bilinear operators. Denote by B(E1, E2;F ) the set of all regular
bilinear operators from E1 × E2 to F .

Let E1 and E2 be some majorizing sublattices of the vector lattices Ê1 and Ê2, respectively.
The restriction of a regular operator b̂ : Ê1 × Ê2 → F to E1 ×E2 is also denoted by rb̂. It is easily
deduced from Theorem 2 that a positive bilinear operator b ∈ B(E1, E2;F ) admits a positive

bilinear extension b̂ to the whole of Ê1 × Ê2. But a stronger assertion holds.

Theorem 3. Let E1 and E2 be majorizing sublattices of vector lattices Ê1 and Ê2 respectively,

and let F be a Dedekind complete vector lattice. Then there exists an order continuous lattice

isomorphism s acting from B(E1, E2;F ) to B(Ê1, Ê2;F ) such that r ◦ s = idB(E1,E2;F ).

Proof. Since the vector lattices B(E1, E2;F ) and L (E1,L (E2, F )) as well as the vector lattices
B(Ê1, E2;F ) and L (Ê1,L (E2, F )) are pairwise isomorphic, the simultaneous extension operator
s1 : L (E1,L (E2, F )) → L (Ê1,L (E2, F )), which exists by Theorem 2, defines a simultaneous
extension s′1 of regular bilinear operators from E1 × E2 to Ê1 × E2. Further, making use of the
isomorphism of another pairs of vector lattices, namely B(Ê1, E2;F ) and L (E2,L (Ê1, F )) as well
as B(Ê1, Ê2;F ) and L (Ê1,L (Ê2, F )), a simultaneous extension s′2 of regular bilinear operators
from Ê1 × E2 to Ê1 × Ê2 can be defined in a similar way. Clearly, s = s′2 ◦ s′1 is the desired
operator. 2

Lemma 6. Let b, d ∈ B(E1, E2;F ), 0 ≤ b ≤ d, and let d̂ be an arbitrary positive bilinear

extension of d to the whole of Ê1 × Ê2. Then there exists a bilinear extension b̂ of b to Ê1 × Ê2

such that 0 ≤ b̂ ≤ d̂.

Proof. The proof can be obtained by using the existence of the tensor product E1 ⊗ E2 of any
Archimedean vector lattices E1 and E2 and taking into consideration the fact that E1 ⊗ E2 is a
majorizing sublattice of Ê1 ⊗ Ê2 (see [3; Theorems 4.4 and 5.3]). 2

Definition. A bilinear operator b ∈ B(E1, E2;F ) is called order continuous if for every x′ ∈ E1

and x′′ ∈ E2 we have b(uα, x
′′)

(o)
−→ b(u, x′′) and b(x′, vα)

(o)
−→ b(x′, v), whenever uα

(o)
−→ u in E1

and vα
(o)
−→ v in E2.

Theorem 4. Let F be a Dedekind complete vector lattice and let Ê1 and Ê2 be the Dedekind

completions of vector lattices E1 and E2, respectively. Then every order continuous regular bilinear

operator b : E1×E2 → F admits a unique order continuous regular bilinear extension to Ê1× Ê2.

Proof. This follows immediately from Theorem 2 and Remark 3. 2

Definition. A bilinear operator b ∈ B(E1, E2;F ) is called 1) abnormal if it vanishes on some
order dense ideal in the vector lattice E1×E2, 2) normal if it is disjoint from all abnormal operators,
and 3) antinormal if it is disjoint from all normal bilinear operators.

Denote by Bn(E1, E2;F ) and Bant(E1, E2;F ) the sets of al normal and antinormal bilinear
operators and let Ln(E,F ) stands for the set of all normal bilinear operators from L (E,F ).

Proposition 4. The set of all order continuous regular bilinear operators is a band in

B(E1, E2;F ) which coincides with the band Bn(E1, E2;F ).
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Proof. Just as in the proof of Theorem 3 we shall employ the isomorphism between vector lattices
B(E1, E2;F ) and L (E1,L (E2, F )). Denote by τ this isomorphism. Take an order continuous
bilinear operator b ∈ B(E1, E2;F ). For every x ∈ E+

1 we have

(τb+)x = (τb)+x = sup{(τb)x′ : 0 ≤ x′ ≤ x, x′ ∈ E1}.

Since (τb)x′ ∈ Ln(E2, F ) for all x′ ∈ E1, it follows that (τb+)x ∈ Ln(E2, F ). This means that
b+(x, ·) is order continuous for every x ∈ E1. Similar reasoning shows that b+(·, y) is also order
continuous for any y ∈ E2. Suppose that d ∈ B(E1, E2;F ) is abnormal and positive and put
a = b ∧ d. Then a is also abnormal, since a ≤ d as well as a is order continuous, since a ≤ d.
Consequently a = 0.

Conversely, assume that b ∈ Bn(E1, E2;F ). Since an order dense ideal in E1 × E2 is the
Cartesian product of order dense ideals, τ−1(U) is an abnormal bilinear operator for every abnormal
U ∈ L (E1,L (E2, F )) and thus b and τ−1U are disjoint. Consequently τb and U are also disjoint
and we come to the relation τb ∈ Ln(E1,L (E2, F )) which implies that b(x, ·) is order continuous
for any x ∈ E1. Similar reasoning ensures that b+(·, y) is also order continuous for any y ∈ E2. 2

Now we are able to state a result similar to the theorem on homomorphism between the classes
of regular operators on vector lattices and their Dedekind completions due to A. I. Veksler [4].

Theorem 5. Let r be the restriction operator sending each b ∈ B(Ê1, Ê2;F ) to its restriction

onto E1 ×E2. Then the following assertions hold:

(1) r is a strongly isotonic algebraic homomorphism;

(2) the inverse image of Bant(E1, E2;F ) coincide with Bant(Ê1, Ê2;F );

(3) the restriction of r to Bn(Ê1, Ê2;F ) is an algebraic and lattice isomorphism onto

Bn(E1, E2;F );

(4) for any b ∈ Bn(E1, E2;F ) the set r−1(b) is of the form b̂ + E where b̂ ∈ Bn(Ê1, Ê2;F ),

r(b̂) = b, and E is a set of antinormal operators vanishing on E1 × E2.

Proof. This follows immediately from Theorem 4, Proposition 4, and Lemma 6. 2

4. Representation of regular functionals

In this section G denotes a universally complete vector lattice13 with the principal order ideal
M generated by the order unit14. Let E and F be arbitrary vector sublattices of G. In [5] the
space of regular functionals on an arbitrary order ideal in G was embedded into the universally
complete vector lattice M(M̃)∗) so that functionals disjoint in a generalized sense are transformed
into functionals disjoint in the conventional sense. We are going to obtain similar results for an
arbitrary sublattices of G by applying the results of Section 1.

First of all we introduce the notion of generalized disjointness of regular functionals defined on
different sublattices E ⊂ G and F ⊂ G of the same universally complete vector lattice G.

Definition. Let f ∈ Ẽ and g ∈ F̃ 15. We say that f and g are disjoint (and write f δ g) if
arbitrary positive extensions of |f | and |g| respectively to I(E) and I(F ) are disjoint in the sense
of [5]. (From here on I(E) denotes the order ideal in G generated by E.)

It follows from Proposition 5 and [5; Lemma 9] that if E = F , then the generalized disjointness
is equivalent to the conventional one.

Lemma 7. Let G1 and G2 be universally complete vector lattices with order units
�
1 and�

2, respectively. Let T1 be an order dense ideal in G1, T2 an order ideal in G2, and ϕ a Boolean

isomorphism of the Boolean algebra E(T1)
16 onto a complete subalgebra of the Boolean algebra

E(T2). Then there exists a unique pair (S, V ), where V is an order closed vector sublattice of G2

and S is an isomorphism of G1 onto V , satisfying the following conditions:

(1) S(
�
1) = PrV dd

�
2;

13with a fixed order unit, say � . Universally complete vector lattice = Extended K-space.
14Principal ideal generated by the order unit = Subspace of bounded elements.
∗)M(M̃) denotes the universal completion (= maximal extension) of the Dedekind complete vector lattice M̃ .
15Ẽ denotes the set of all regular functionals on E.
16E(T ) denotes the Boolean algebra of all bands of the vector lattice T .
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(2) for any band H in G1 the bands generated in G2 by S(H) and ϕ(H ∩ T1) coincide.

Proof. Extend ϕ to an isomorphism ϕ̄ between the bases of G1 and the universal completion of
T2. Denote by µ the corresponding isomorphism between complete Boolean algebras B1 = {PrL

�
1 :

L ∈ E(G1)} and B2 = {PrK
�
2 : K ∈ ϕ̄(E(G2))}. Let V denotes the sublattice in G2 consisting

of the elements whose spectral functions take their values in the Boolean algebra B2. Define an
isomorphism between G1 and V by

Sz =

∞∫

−∞

λ dµ(ezλ)

where (ezλ)λ∈R is a spectral function of z. Clearly, S satisfy (1) and (2). 2

Now, if we insert q for ϕ and replace T1 and T2 by Ẽ and Ĩ(E) respectively, then we obtain the
following.

Corollary. Assume that some order units
�
1 and

�
2 are fixed in the universally complete vector

lattices M
(
Ĩ(E)

)
and M(Ẽ), respectively. Then there exists a unique pair (SE , VE) such that VE

is an order closed sublattice of M
(
Ĩ(E)

)
, SE is a lattice isomorphism of M(Ẽ) onto VE , and the

following hold:

(1) SE(
�
1) = PrV dd

E

�
2;

(2) for any band H in M(Ẽ) the bands generated in M
(
Ĩ(E)

)
by SE(H) and q(H∩Ẽ) coincide.

Lemma 8. For a positive functional f ∈ Ẽ the bands generated in M
(
Ĩ(E)

)
by SE(f) and by

the set of all positive extensions of f to the whole of I(E) coincide.

Proof. Follows immediately from the above Corollary and Proposition 3. 2

Theorem 6. Assume that some order units
�
1 and

�
2 are fixed in the universally complete

vector lattices M
(
Ĩ(E)

)
and M(M̃), respectively. Then there exists a unique pair (R̄E , V̄E) such

that V̄E is an order closed sublattice of M(M̃), R̄E is a lattice isomorphism of M(Ẽ) onto V̄E , and

the following hold:

(1) R̄E(
�
1) = PrV̄ dd

E

�
2;

(2) for any f ∈ Ẽ and g ∈ M̃ the relations f δ g and R̄E(f) d g are equivalent.

Proof. Denote by (RE , VE) the canonical representation of Ĩ(E)17 and put R̄E = RE ◦ SE ,
V̄E = R̄E(VE). Then the pair (R̄E , V̄E) obey the required conditions. Indeed, (1) follows obviously
from the above corollary18 and it suffice to prove (2) only for positive functionals. Thus, take

positive functionals f ∈ Ẽ and g ∈ M̃ . Denote by H the band in M(Ẽ) generated by f and put

H1 = H ∩ Ẽ. By definition f δ g means that all positive extensions of f to I(E) are disjoint from
g in the sense of [5], i. e. f D g19. By Proposition 3 this is equivalent to q(H1)D g which means,
by Theorem 3.1 of [5], that the set RE(q(H)) is disjoint from g. This latter, combined with the
corollary to Lemma 7, gives RE(SE(H)) d g, i. e. R̄Ef d g.

Uniqueness is easily deduced from Lemma 7 in the same way as in [5; Theorem 3.1]. We need
only to observe that R̄E corresponds by Lemma 7 to the isomorphism B ◦ q20 of Boolean algebras
E(Ẽ) and E(V̄E). 2

Theorem 7. If f ∈ Ẽ and g ∈ F̃ , then the relations f δ g and R̄E(f) d R̄F (g) are equivalent.

Proof. Without loss of generality we may assume that f and g are positive. Let E (f) and E (g)
stand for the sets of all positive extensions of f to the whole of I(E) and of g to the whole of I(F ),
respectively. Then by Proposition 3, Lemma 8, and Theorem 3.3 from [5] we have

(
RE(SEf)

)dd
= RE

(
E (f)dd

)
dRF

(
E (g)dd

)
=
(
RF (SF g)dd

)
.

Thus, R̄Ef d R̄F g and the proof is complete. 2

17See [5; Theorem 3.1].
18Combine Lemma 7 (1), [5; Theorem 3.1 (2)], and the above definitions of V̄E and R̄E .
19If f ∈ Ẽ and g ∈ F̃ , then f D g means that f(u) d g(v) in M̃ for all u ∈ E+ and v ∈ F+, where f(u) ∈ M̃ is

correctly defined by f(u)(x) = f(xu) (x ∈ M), since G is endowed with the product that makes G an f -algebra
having � as its unit element and E ·M ⊂ E, see [5; 3.2 and 3.3].

20For the definition of B see [5; Lemmas 10 and 12].
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